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Four main topics will be covered

• A simple experiment that sheds light on how the stick 

and microslip zones work.

• A discussion of the role of lateral shear stress in 

microslip.

• A review of the entry slip criterion presented in a 

2009 IWEB paper and its relationship to lateral shear 

effects.

• An improved nonlinear model for the web-on-roller 

geometry, using curvilinear coordinates.
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Terminology - Microslip - (in a steady state)

• If torque is applied to a roller, either to brake or drive it, then 
tension in the web has to change between the entry and the 
exit. This means that the web must also stretch and slip on the 
rigid roller surface. 

• This slipping is called microslip to distinguish it from the 
slipping that occurs when the web breaks completely free of 
the roller. 

• Frictional forces that result from the microslip establish 
equilibrium between the tension change in the web and the 
applied torque. 

• The direction of the microslip, relative to the roller surface, 
can be either in the direction of web motion or against it, 
depending on whether the tension is increasing or decreasing 
as the web moves through the microslip zone.
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The capstan equation
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I chose to associate, a sign with φ, positive if T2 > T1 and negative otherwise. 

That takes care of the bookkeeping. But, if I could redo the paper, I would 

change that; because it takes attention away from the root cause, which is the 

direction of motion of the web relative to the roller. And that’s exactly the 

kind of fuzzy thinking I wanted to eliminate.

In this paper, θ is taken as 

negative CCW.

φ is the coefficient of 

friction



A closer look at the capstan model

• Caution: The following discussion applies only to a 

web that is in a semi-static situation. In a 

continuously moving web, with tension changes at 

the roller entry, things are more complicated.

• However, this doesn’t alter the main point, which is 

that much of a moving web’s behavior on a roller 

originates at the exit and propagates toward the entry. 
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Why worry about stick zone location?

• Because a better understanding of this question is critical to 
developing a full 2D model and it’s not a trivial question.

• In earlier work, investigators have gone to considerable pains 
to explain the nature of the microslip zone.

– Brandenburg in 1972 and Dwivedula in 2005 both used a discrete 
model consisting of a chain of solid blocks and springs wrapped onto a 
roller surface to explain how strain at the exit propagates  up the chain

– And they both demonstrated that making the elements progressively 
smaller leads to the capstan equation.

• When it comes to location, though, Brandenburg doesn’t make 
an argument for location at all and Dwivedula used a 
thermodynamic argument to prove that it can only be at the 
entry.

IWEB 2011 6



The semi-static experiment
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This is the experimental setup which 

will be the basis for discussion.

The belt is 1 inch wide and made of 

0.005 inch (0.127 mm) latex. Test 

weights were 0.231 Lb (1.027 N) and 

0.359 Lb (1.699 N). The coefficient of 

friction was 0.62.

The roller could be locked or released 

and turned by hand.

The scale on the latex was made with a ball point pen and metal scale. The maximum 

strain was 50%.  A paper reference scale was taped to the roller. This was primarily used 

to get a qualitative sense of  what was happening. Expectations for quantitative 

measurements were low because of the large strain and stiction. However, some data 

was taken and results will be presented after the theoretical discussion.



The traction graph
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This and the following graphs are hypothetical and based on the capstan equation. 

To simplify the discussion, the weight at the exit end is assumed to be 2 N. At the 

entry it’s 1 N. Under these circumstances, two microslip zones develop and they 

intersect at a point where the tensions on both sides simultaneously satisfy the 

capstan equation . On a fixed roller, like the one shown in the photo, microslip

zones will be active only while they’re forming. So, the web will quickly settle 

into a state of equilibrium and the microslip will become inactive. 



The traction graph
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It should be mentioned that this isn’t the only possible  microslip geometry. If the 

difference in the weights is reduced, a point will be reached where a constant 

tension zone develops between the two curves. If the difference in the weights is 

increased, a point is reached where one of the microslip zones consumes all of the 

wrap angle and the belt will slip off the roller. 



Now add a 10 degrees of rotation
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Now, imagine that the roller is unlocked and slowly rotated by hand, 10 degrees 

toward the exit. An initial assumption might be that both zones move with the 

roller as shown above. At point (a), there is no problem with this assumption. The 

web enters onto the roller at the same tension it had in the free span. So, in 

segment (a), the derivative of T with respect to θ is zero and that’s allowed by the 

capstan differential equation, because there is no relative motion between the web 

and roller to enable friction. 
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The situation at the exit
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But, there is a problem at point (b). As the web moves off the roller into the free 

span, it will have to make a rapid change in tension.  This would require the 

derivative of T with respect to θ to become very large – larger than the limit of 

imposed by friction in the differential equation . So, something else must happen 

there. 



What really happens at the exit
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As the roller begins rotating, the bit of web adjacent to the exit sees an increase in 

dT/dθ. This goes up until φT is exceeded, causing that bit to slide into a new position 

on the roller. This creates a disturbance that travels upstream toward the entry at the 

speed of sound, causing each point, in turn, to be displaced in the same manner . This 

process stops at the point where the new exit segment meets the displaced entry 

segment. As the roller continues to rotate, this continues until all that’s left is a 

constant tension stick zone at the entry and a microslip zone at the exit. 



An experiment
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The strain was measured by taping a paper strip next to the latex scale and 

placing a pencil mark on the paper opposite each scale marking. This was the 

second largest source of error – on the order of 0.02 inch (0.5 mm). Then, the 

paper strip was taken off the roller, laid flat, and measured in the same way as 

the latex scale. Stick-slip was the biggest source of error. Efforts were made to 

help that with some cautious banging on the machine frame. The modulus of the 

latex wasn’t independently measured. Instead, the strain data was scaled to 

make the value at the exit end equal to the numerical value of the test weight. 

The scale marks on the latex were 

1/10 inch (2.54 mm) apart. Since 

they were made by hand using a 

metal scale, it was calibrated while 

relaxed and flat on a table, using a 

precision scale and a magnifying 

glass. 



Data
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It’s apparent that a considerable amount of stick-slip remained. The data shown 

here was smoothed using a running average with a coefficient of 0.5. Significant 

Poisson contraction was evident and may also have affected the assumption of 

uniaxial stress. However, everything considered, the data fits surprisingly well. 

It’s good enough to provide at least modest assurance that the reasoning is 

correct.



Microslip on idlers
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Microslip can be present without 

any net transfer of torque to a 

roller. 

This shows a latex web on the 

roller upstream of a misaligned 

roller. It’s well known that the 

web deflection creates a moment 

there and the grid shows the MD 

strain differential. On the low 

tension side it extends almost to 

the entry.

Shear microslip is also evident in the gap between the left edge and the tape. 

The red arrow on the tape marks the exit line.

It’s evident that the microslip could interfere with the entry conditions long 

before the tension distribution is bad enough to cause the web edge to lift.

Something like this could be happening with a cambered web.



The entry slip criterion

• I see no reason to doubt the entry slip criterion derived in the 2009 Part 1 

paper.

• It’s a necessary condition for existence of a stick zone.

• However, by itself, it isn’t sufficient because it takes no account of what 

happens in the rest of the wrap.

• A concise derivation is in the paper. The net result is,
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Note: The y-derivatives were used in the 2009 paper. But, since the stresses 

in this equation exist in the free span at the entry,

Incorrect in the paper.



A rearrangement of the capstan equation
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In the Part 1 paper, it was shown that both sides of the equation we began with 

could be multiplied by the reciprocal of the roller radius 1/R and that Rθ could 

then be replaced by a Cartesian coordinate such as x. And if the tension T is 

changed to stress σ xx we get something that looks like a one-dimensional 

equilibrium equation, where it’s understood that the right hand side is the result 

of a stress that’s pressing the web against a rigid surface.

xxxxd

dx R




With this in mind and considering the earlier discussion about microslip behavior 

it’s not entirely unreasonable to consider a capstan equation for shear. Although, 

this requires a number of questionable assumptions, it could be instructive.



A capstan equation for shear
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The first assumption is that in a shear stress microslip zone,  MD stress is constant. 

This can’t be strictly true. But, MD stress is generally much larger than the shear 

stress. So, it may not be totally irresponsible.  To the extent that it’s wrong, we have 

to also question the validity of the MD capstan equation.

The next assumption is that shear stress should face the same situation as MD stress, 

in regard to the location and development of the microslip zone. This is completely 

plausible.

With those assumptions, a capstan equation for shear would  look like this, where 

σxx is assumed to be constant.

xy xx
d

dx R

 
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Results of integration
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Shear stress  usually has a non-uniform profile. At a misaligned roller, for 

example, the distribution is parabolic. But, for the moment, we will assume 

that that it has a uniform, width-wise distribution with the same average value 

as the non-uniform profile.

The equation is even easier to integrate than its companion. If σxy1 is the 

entrance value and σxy2 the exit value, x is taken as negative for CCW θ and the 

right hand term is positive when σxy2 > σxy1 , the results are,
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Fxy represents the lateral force (or force/width) and Fx represents the tension in 

units of force (or force/width).



Comparison with current practice
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Looking at the last equation from another point of view, we can write,

maxxy xF F

Where Fxy is the maximum lateral force difference that can be supported across 

the roller, Fx is the MD tension in units of force and θmax is the total wrap angle.  

This is the same result produced by a straightforward static calculation without 

regard to microslip and is in agreement with current practice - at least by Tim 

Walker.

The significant thing about looking at this from the standpoint of microslip is 

that the shear stress profile is really parabolic and could be producing traction 

problems in the center part of the web well before reaching the limit of the static 

criterion.

Wrong in paper



A sample calculation
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To get a little feeling for how much shear matters, values were calculated for a 

misaligned roller using an FEA model.

Length        60 inches (1.52 m)

Width 40 inches (1.02 m)

Thickness 0.001 inch (25.4 microns)

Tension 0.5 pli [500 psi (3.5 MPa)]

Modulus 50,000 psi (0.34 GPa)

Poisson ratio 0.35

Roller radius 3 inches (76 mm)

Roller Angle 1 deg (0.017 radian)

Coefficient of friction 0.25

The average shear stress is 53.4 psi (0.37 MPa). So,  θmax is 24.5 degrees (0.43 radian)

It’s worth noting that the FEA analysis indicated that the entry slip criterion, defined 

earlier, was barely met.

Missing in paper



The 2D+w model for a web on a roller
(in cylindrical curvilinear coordinates)
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For a detailed discussion of the 2D+w model, please refer to the paper presented 

earlier.

For a cylinder with y-axis symmetry, radius r, and azimuth angle θ, the 

coordinate transformations are,

   cos sinx r y y z r   

The deformed curvilinear coordinates for the stressed web will be denoted using 

tildes .

The displacement variables in the cylindrical coordinate system will be u for the 

θ-direction, v for the y-direction and w for the r-direction.

Although r will be eliminated as a variable in this problem it still has role as a 

constant. To make that fact easier to remember, r will be capitalized. 



Notation
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The following definitions not only make subsequent equations more compact. They 

also group terms that have special relevance in nonlinear elasticity as components of 

expressions for strain and the angles between relaxed and deformed coordinates.

In linear theory, they actually become the strains, shears and rotations.



Equations of equilibrium
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All derivatives and terms involving the r-coordinate have been removed, so that 

the equations will represent a membrane. In its relaxed state it is shaped like the 

surface of a cylinder (symmetrical about the y-axis), and w is any displacement 

from that surface caused by a load applied to it.

If w = 0 these go away.



The third term
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Here is what’s left of the r-direction equation. Only the first two equations should be 

needed when there is no radial displacement. So, what’s wrong? The trouble is due to 

the fact that the web is being pressed against a roller and the roller is providing a 

reaction pressure to support it. The mathematics obediently created the radial pressure 

of the web. However, nothing in the derivation of the equations presumed the 

existence of a reaction. So, the existence of the roller cancels out the last group. It’s 

going to reappear, though, in the first two equations as part of friction terms.

It should also be noted that the quantity inside the brackets is identical to the term 

inside the first set of brackets of the θ-direction equation.
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Unrolling the web
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Finally, all of the products         can be replaced by a new variable which will be 

called x. Making this change and setting w equal to zero, the equilibrium equations 

for a web on a roller with friction are,
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The terms Ωx and Ωy are friction functions. 

R 



Strains and stresses
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These strains are aligned with the coordinates of the stressed web. But they are 

defined in term of the Cartesian system of the relaxed web (Green-Lagrange 

strains).

These are the corresponding stress-strain relations – Hook’s law again. The stresses 

are also aligned with the deformed coordinates of the stressed web (Cauchy 

stresses).



Accounting for friction
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The problem now remains to determine the friction functions . 

There will be components of friction in both the x and y directions, depending on 

conditions in the entry and exit spans.  So, it is treated as a vector quantity.

In the microslip zone it will take its maximum value
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In the stick zone,



Accounting for friction
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Also in the stick zone, (following the same reasoning as in the earlier discussion of 

the entry slip criterion), the following relationships will hold.
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The equations of the last few slides are not sufficient to create a working FEA 

model. Something more is needed to define the direction of microslip – probably 

the relative velocity between the web and the roller. But, this is getting closer. 

The rest will have to wait for Part 3.



Conclusions

IWEB 2011 31

Location of the stick zone:

Changes in tension in the microslip zone propagate from the exit toward 

the entry and this explains why the stick zone is at the entry.

Hypothesis of a shear microslip zone:

Lateral stresses may propagate from back to front in the same manner as 

longitudinal stress and either contribute to microslip zones or create their 

own, even on an idler.

Because of the linear relationship between shear-microslip and wrap angle, 

the amount of wrap necessary to prevent slipping can be calculated using 

current methods. However there may often be situations in which the 

lateral profile of shear stress, which is usually non-uniform, causes it to 

penetrate into the line of entry causing loss of traction over only the central 

part of the web. This could aggravate wrinkling problems.



Conclusions
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Progress toward a complete model:

Some additional progress over Part 1 has been made toward a full 2D model of 

traction on a roller. The 2D+w model with cylindrical curvilinear coordinates 

incorporates the features of nonlinear elasticity and the terms for radial 

pressure appear in the results as a natural consequence of a well-established 

formal procedure. And a better understanding of the nature of microslip has 

been gained through testing and analysis.



Time for Q&A

• There are quite a few typographical errors in the 

paper. If you would like a corrected copy, just send 

me a note essexsys.com.
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