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Three main topics will be covered

• An improved conceptual framework for solving 
lateral web handling problems - an extension of work 
presented at IWEB 2005. It is based on,

– The principle of conservation of mass 

– Nonlinear elasticity theory. 

• An efficient method for using these ideas by treating 
all webs, flat or otherwise, as membranes in a two-
dimensional frame of reference.

• An explanation of how all of the these ideas are 
applied to the problem of modeling a baggy web.
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A pitch for elasticity theory in web handling

• It provides a natural framework for incorporating the 
lateral effects of conservation of mass – which the others 
don’t.

• It’s the foundation for all the other methods we use.

• It’s now possible to solve the equations with desktop 
computer tools.

• These tools are fast enough to be used as learning aids for 
elasticity theory.

• If you notice a tutorial quality about this presentation, 
that’s because I’d like to help other people to pursue this 
approach.
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The history of                in webs

• Osborne Reynolds first used it to explain creep in 

belts on pulleys in 1874.

• Shelton applied it in a 1986 paper on tension control 

and called it “concept of transport of strain”.

• The author used it in a two-dimensional sense as the 

basis for one of the boundary conditions in a 2005 

IWEB paper and called it the “normal strain rule”.

• It’s actually a corollary to a more fundamental 

concept – The Velocity-Strain Equation
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Nonlinear elasticity theory

• The type discussed here deals with problems like this – small strains, but large 
rotations.  This obviously includes other kinds of thin curved shapes.

• For web handling it’s necessary not only for large rotation problems like twisted or 
baggy webs. It’s also needed to deal with the interaction of MD stress with small 
rotations.

• In 1953 Novozhilov published a wonderful monograph on the subject in which he 
derives and explains the equations without the use of tensors and then shows how 
they can be simplified for small strain. And, most importantly, he explains the 
physical interpretation and limits of application of everything as he goes. 

• For web handling, it’s essential. Linear theory is practically useless for modeling 
lateral web behavior.
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Requirements for comparing mass flows
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Three things needed for calculating mass flow:
•Paths followed by the web particles

•Cross sectional area

•Density of the material



Nonlinear elasticity is the key
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It provides:
•The direction cosines for               relative to x, y and z

• Cross sectional area

•Density of the material
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Deformed coordinates on twisted web 
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The Velocity-Strain Equation
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Ok, so what’s the big deal
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It’s this. The MD strain boundary condition at the downstream roller can now 

be defined in terms of only the conditions at that roller. There is no need to 

know anything about what’s happening at the upstream roller. And this is 

critical for non-uniform web models like a baggy web.

With the normal strain rule it was necessary to know the strain at the entry of the 

upstream roller. That was ok for a misaligned or concave roller, because uniform 

stress could be assumed in the upstream span. But, you can’t do that for a non-

uniform web. However, with the velocity-strain equation, Vs becomes the 

surface velocity of the roller and the ratio of Vs to Vr can be calculated from the 

target values for the averages plus information about the shape of the roller 

and/or the web .

Normal strain rule

Velocity-strain Eq.



Notation definitions
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Equations of equilibrium for the 2D+w model
(No terms involving z)
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y-direction Eq.

z-direction Eq.

Cauchy stresses - aligned 

with the               axes

Projection of 

Cauchy stresses 

on the x-axis

Cosine of angle 

between x and x

Cosine of angle 

between y and x

x and y



Nonlinear theory of shells for membranes??

• The 2D+w equations, when combined with 

curvilinear coordinates,  constitute a nonlinear theory 

of shells for membranes.

• When viewed from the perspective of the literature on 

this subject, they might be considered naïve and 

treacherous – unstable solutions, only certain types of 

boundary conditions allowed, etc.

• But for web handling, there is a simple way to make 

them safe and useful.
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Strain in the          coordinate system 

IWEB 2011 15

,x y

2 2 2
1

2
xx

u u v w

x x x x


         
         
          

2 2 2
1

2
yy

v v u w

y y y y


         
         

          

xy

u v u u v v w w

y x x y x y x y


       
    
       

x direction

y direction

shear in x y plane

See the paper for an example of how these work.



Stress-strain relations (Hook’s law)
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Normal entry condition
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For a flat, rectangular web

Cosine of angle between x and x

Cosine of angle between y x

Ψ is set equal to the angle of the down-

stream roller axis, relative to the y-axis.



The baggy web

• Elastic analysis requires we 
start with a relaxed reference 
shape.

• It’s got to allow web motion 
without creating strains. That 
suggests a surface of 
revolution.

• When you consider the 
causes of bagginess, it’s 
natural to think of a segment 
of a torus-like shape.

• So, we’ll start with a simple 
torus.
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Three basic types of surface curvature
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Elliptic

Centers of the principal curves are 

on same side.

All points are elliptic on this one.

(Outer part of a torus)

Hyperbolic

Centers of principal curves are on 

opposite sides.

All points are hyperbolic on this one.

(Inner part of a torus)

Parabolic

Curvature of zero in one direction

Example: All points on a cylinder



Curvilinear coordinates

• To use the 2D+w model, the toroidal surface must be 

“flattened”.

• This is done with curvilinear coordinates in which α

will replace the x-coordinate and β will replace y.

• The displacements will continue to be labeled as u, v

and w. They will still have units of distance.

• The displacement w will be defined as being along a 

normal to the relaxed surface with w = 0 being at the 

surface itself.
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The 2D+w model in curvilinear coordinates

• There is nothing out of the ordinary in the conversion of 

the 2D+w model to toroidal curvilinear coordinates and 

the methods are covered in numerous references. So, 

there is no reason to take the time to discuss them here.

• The final equations are presented in the paper using 

coordinates α and β. Tildes are once again used to indicate 

the coordinates after they have been deformed by stress.

• Furthermore, all of the relationships between the relaxed 

and deformed coordinates that held for the Cartesian 

system also hold for the curvilinear α-β coordinates.  
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Applying the velocity-strain equation
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Velocity of the surface of the torus as a 

function of  Vo and β is,

The velocity-strain equation provides 

MD strain at the downstream 

boundary as a function of Vs, Vo and 

β.

Surface velocity of roller

The ratio Vs/Vo can be calculated based 

on the desired strain at β = 0 or on a 

target for the  average value of bndry



The normal entry condition
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Making the model behave

• Introducing the variable w can open Pandora’s box, especially 
when the solution involves compressive stress. Then, 
wrinkling becomes possible and the PDE becomes unstable.

• So, some way must be found to help the solver.

• One of the things we know in advance is that the MD tension 
will pull the web toward flatness. 

• A real baggy web may not become totally flat. But, for web 
handling purposes, much can still be learned from a membrane 
model that forces flatness because a flat web is the ideal. 

• So, we force it to be flat and if there are compressive stresses 
in some parts of the flattened model, we at least know that 
wrinkles would likely have formed there.
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Forcing the web to be flat
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  610flatw w

An expression that defines values of 

w on a plane that touches the four 

corners of the toroidal segment.

A large number that is 

determined by trial and error

This term is added to the right 

side of the z-direction 

equilibrium equation.

and flatw w
Numerical analysts call this a penalty function. It forces the difference 

between                       to become very small to simultaneously satisfy both 

sides of the PDE. 

A better way to think about it is that the       factor is a large pressure that is 

forcing the web against a rigid frictionless surface.
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Results - Model parameters
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Span length (chord) = 40 inches (1.016 m)

Width (chord) = 20 inches (0.508 m)

Thickness = 0.001 inch (0.025 mm)

Poisson ratio = 0.3

E = 500,000 psi (3.447 Gigapascals)

MD tension = 1000 psi (6.895 Megapascals) 

Poloidal angle, β = ± 2 deg (0.035 radian)

Toroidal angle, α = ± 2 deg (0.035 radian)

Rα = 572.7 inches (14.55 m)

Rβ = 286.54 inches (7.28 m)

Elliptic curvature:

Difference in MD arc length at center compared to edge = + 0.02%

Hyperbolic curvature:

Difference in MD arc length at center compared to edge = - 0.06%



Results for an elliptic baggy web
Edges shorter than center
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MD stress

Highest stress at edges

CD stress

Positive  CD stress at 

downstream  roller



Results for an elliptic baggy web
Edges shorter than center
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Shear stress Principal minimum stress at 

downstream roller

Positive - it spreads



Results for a hyperbolic baggy web
Edges longer than center
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MD stress

Highest stress in center

Negative CD stress

At downstream roller



Results for a hyperbolic baggy web
Edges longer than center
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Shear stress Principal minimum stress at 

downstream roller

Negative – it wrinkles



Consistency tests
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Setting w = 0 is equivalent to having the web run over a frictionless mandrel shaped like 

the relaxed web. Under that condition, the web should show very little variation in the α-

direction stress.  A very small amount of β-direction stress would be expected to account 

for the effect of lateral curvature. Here are the results for the elliptic web with a simple 

1000 psi MD load at the downstream  roller and no CD load (normal entry turned off).

MD stress CD stress



Consistency tests

• Another test was to move the       plane to a different location. 

If the model is working correctly, the results shouldn’t change. 

In the elliptic model it was moved from the concave side, 

where it was touching the corners, to a position where it was 

tangent to the convex surface. There was no change in the 

results out to the 5th significant figure.
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Consistency tests
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After submitting the paper, it occurred to me to ask what the stress fields 

would look like if all of the edges were left free of stress (free-free) so that 

only the stresses due to flattening were visible. Here are the results.  I think 

they’re persuasive.

MD stress CD stress



Tentative conclusions
(There is no experimental data)

• An elliptic (short on the edges) baggy web will not wrinkle at a 
downstream roller. It will develop lateral tensile stress like a uniform web 
on a concave roller. If the bagginess is clearly visible, it is possible that the 
lateral tensile stress will be large enough to cause slipping and scratching.

• A hyperbolic (long on the edges) baggy web may wrinkle at a downstream 
roller. It will develop lateral compressive stress like a uniform web on a 
crowned roller. If the bagginess is large enough to be observable, it is likely 
that the compressive stress will be so high that it will be difficult to prevent 
wrinkling.

• The behavior of elliptic and hyperbolic webs will not change with the 
direction of wrap.

• Increasing tension to pull out the slack may eliminate gross problems, but it 
won’t change the tendency to spread or wrinkle.

• A web that has narrow baggy lanes due to deep corrugations in a wound 
roll will likely have spreading where the peaks were and wrinkling at the 
valleys.
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Corrections to the paper

• In the section titled Velocity-Strain equation for a 

torus, in the first sentence of the first paragraph.

– If a target value for the average strain is specified, the 

following procedure can be used to find … . 

• In equation (63)
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Q&A
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If you are interested in using nonlinear elasticity theory and would like to have working 

example of an FEA script for a misaligned roller, compatible with FlexPDE. Just send me a 

note at essexsys.com.

Corrections to paper

In the section titled Velocity-Strain equation for a torus, the first sentence of the first 
paragraph, should read,

If a target value for the average strain is specified, the following procedure can be used. to 

find … . 

In equation (63)

This should be.
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