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ABSTRACT 

 

This paper presents a model for longitudinal tension propagation in a narrow web. 

There have been numerous investigations of transverse (out-of- plane) oscillations in a 

closely related application known as the "Traveling String". A few of these papers 

included consideration of the longitudinal oscillations which accompanied transverse 

oscillations. However, no attention has been given to longitudinal tension propagation as a 

principle feature of solid material transport. 

The model is based on the one-dimensional wave equation, modified for a moving 

medium. Boundary conditions are developed that, for the first time, incorporate tension 

transfer and mass transport on rolling supports. A closed-form solution is developed using 

Laplace transforms.  

A number of phenomena are described that will be of interest to process designers 

and troubleshooters. These can be used to explain existing tension problems, whose causes 

may have been unrecognized in the past, and to anticipate problems that will appear as line 

speeds are increased. Among these are: 

1. Propagation of strain discontinuities when draw is increased suddenly. 

2. Amplification of repetitive strain disturbances due to strain reflection and 

reinforcement. 

3. Damping of solitary strain disturbances by transportation of energy out of the 

span. 

4. Alteration of longitudinal resonant frequencies by transport motion.  

Another important use of the model is to serve as a necessary step toward more 

advanced models that include out-of-plane motion, viscoelasticity and aerodynamics. 

The model is tested by comparing it to the currently accepted O.D.E. model. At large 

time scales, where propagation phenomena are imperceptible, the two models are in good 

agreement. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NOMENCLATURE 

 

Ao  cross sectional area of web in relaxed state 

A1, A2, A3  cross sectional area of the web at the entry to roller A,  exit of roller A 

and entry to roller B 

C  longitudinal velocity of sound in the web material 

E  Young's modulus of web 

L  length of unsupported span between rollers A and B 

s  laplace transform variable 

t   time 

T1, T2, T3    tension of the web at the entry to roller A, exit of roller A and entry to 

roller B 

V1, V2, V3   velocity of the web at the entry to roller A, exit of roller A and entry to 

roller B 

Va  circumferential velocity of roller A 

Vb  circumferential velocity of roller B 

Vi  transport velocity of web 

x  longitudinal position along web starting at roller A 

1, 2  density of web at the entry to roller A, and at the exit of roller A 

1  initial strain in web 

o  density of web in relaxed state 

v  amplitude of velocity change at roller B, m/s 

  displacement of a web particle from its rest position 

 

INTRODUCTION 

 

The subject of this paper is the behavior of longitudinal tension in a slender strip of 

flexible material, as it is transported in a continuous motion between support rollers.  

Web process lines take many forms. But, the essential common element is that the 

material is a continuous flexible sheet (web) conveyed under tension over supports 

separated by open spans. A slender web is one in which the lateral dimensions are very 

small compared to the length of its open spans. For purposes of this analysis it can be 

considered a string. The supports are assumed to be rollers. 

The model for this paper is based on the one-dimensional wave equation. Boundary 

conditions are developed which, for the first time, incorporate tension and mass transfer on 

rolling supports. The P.D.E. is solved analytically using Laplace transforms. The 

transform method is particularly convenient for investigating the response to a variety of 

forcing functions. 

Solutions for step, single pulse, repetitive pulse and sine wave disturbances are 

presented along with a discussion of their implications for web processing. 

 

BACKGROUND 

 

Control of longitudinal speed and tension of webs is an important problem for web 

process designers. The tension must be high enough to ensure that the web remains free of 

wrinkles and conforms to the passline. It must be low enough to avoid permanent 

deformation and tearing. To date, most of the theoretical work on web tension has been 

directed at the problem of controlling the average tension. Very little attention has been 

given to the details of tension propagation within the span. 
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Current mathematical models for tension behavior [1] are based on equating the 

difference in mass flow rates entering and leaving a span to the time derivative of total 

mass in the span. This leads to a nonlinear ordinary differential equation relating average 

tension to the velocities at the entry and exit of a span. A linearized version has been 

developed for problems in which the velocities change by small amounts relative to the 

average line speed. An implicit assumption in deriving these equations is that tension can 

be assumed to be uniform throughout the span at all times. This is valid in any application 

being considered today because tension propagates very rapidly compared to web 

transport speed. For example, a web being processed at a typical speed of 500 ft/min 

would take 1.2 seconds to move through a 10 foot span. Assuming the web is made of 

polyester with a sound velocity of 3 x 105 ft/min, tension would propagate through this 

span in approximately .002 seconds. At 0.17% of the transport time, the propagation time 

is insignificant. This won't be the case forever though. Already, paper lines are running at 

speeds approaching 10,000 ft/min. The transport time for a span of 10 feet, at this speed, is 

0.06 seconds. 

 

TRAVELING STRING STUDIES 

 

There have been numerous investigations of transverse oscillations in moving 

strings. The moving material in these studies is often described as a "Traveling String".  

Use of the word string is not only due to simplifying assumptions. Many of the authors 

were interested in the problems of transporting yarn from spools into weaving processes. 

The earliest publication was by Skutch [2] in 1897. Subsequent papers by Sack, 1954, [3], 

Archibald and Emslie 1958, [4], Swope and Ames, 1963, [5], Ames, Lee and Zaiser, 1968, 

[6], Ames and Vicario, 1969 [7], Kim and Tabarrock, 1972 [8], and Fox and Lilley, 1991, 

[9] dealt with additional features of transverse oscillations, such as damping, large 

amplitude nonlinearities, nonconservative energy changes, and computational methods. 

Thurman and Mote [10], 1969, presented an analysis of band saw blades that included 

flexural rigidity. Miranker, 1960, [11], who was motivated by problems with magnetic 

tape transport, was the first to observe that energy changes were nonconservative. Yang 

and Mote, 1991, [12] introduced a method for active control of transverse oscillations in a 

moving string using Laplace Transforms. A few of these papers included consideration of 

the longitudinal oscillations, which accompanied transverse oscillations - Ames, Lee and 

Zaiser; Ames and Vicario; Mote and Thurman. However, no attention has been given to 

longitudinal tension propagation as a principal feature of solid material transport. 

 

THE PROBLEM 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 -  Schematic of a Web Span 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the schematic of Fig. 1 it is assumed that: 

 

1. Both rollers are driven and their speeds may be controlled accurately.  

2. Coulomb friction exists between the web and the rollers. 

3. The web obeys the familiar capstan relationship [13] while it is on the roller. 

4. The web is uniform in its relaxed state. 

5. The web is elastic in the longitudinal direction (obeys Hooke's law). 

6. The web is perfectly flexible in the transverse direction. 

 

Inputs to the problem are: 

 

1. Va = Circumferential velocity of roller A 

2. Vb = Circumferential velocity of roller B 

3. 1 = Strain at entry of roller A 

4. A1 = Cross sectional area of web at entry or roller A 

5. E  = Young's modulus of the web 

 

The model has two independent variables, x and t. Variable x is the position along the 

span. Variable t is time. The dependent variable is . It is the displacement of web 

particles from their relaxed positions. The span has length L, starting at the exit of roller A 

and ending at the entry of roller B. In Fig. 1 the symbols T, V, and A refer, in the same 

order, to tension, velocity and cross sectional area. 

 

There are a number of possible choices in setting up a particular problem. In a typical 

process line any one of three inputs, T1, Va, or Vb could vary. However, in the next section 

it will become apparent that varying either of the first two variables leads to a nonlinear 

boundary condition requiring numerical methods for solution. Fortunately, most of the 

important features of tension propagation can be illustrated by varying Vb while holding 

T1 and Va constant - a completely linear problem. This is the case that will be analyzed. 

 

Although the principal topic of this paper is tension, most of the equations are 

formulated in terms of strain. Since Hooke's law is assumed, this creates no mathematical 

difficulties.  

 

BOUNDARY CONDITIONS 

 

Boundary conditions are needed that specify the particle velocities at the two ends of 

the span.  
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In statements like the one above, in which a constant appears as the argument of an 

operation, it will be understood that the substitution is made after the operation is 

performed. The expression on the left should be read as "the partial derivative of  as a 

function of t, evaluated at x = 0". 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

At the entry to roller B, the web will be in the stick zone, where coulomb friction and 

tension act to keep it from slipping. Therefore, at that boundary the speed will match the 

circumferential speed of the roller and the boundary condition is quite simple. 

 






 L t

t
Vb

,b g
                                  Boundary  Condition II     (1) 

 

Boundary condition I is more complicated. Web particles exiting the slip zone of 

roller A won't match the roller speed. They change velocity as the web detaches from the 

roller surface and responds to the tension in the span. An exact analysis of conditions 

within the slip zone is complicated by the nonlinear effect of friction between the web and 

roller. No attempt will be made to do this. It is possible, however, to take account of the 

mass flow into and out of the zone using the principle of conservation of mass. Since the 

length of the slip zone is small compared to the total span, this should provide a reasonable 

approximation for Boundary I. So, at roller A: 

A V A
t

t1 1 1 2 2

0,
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



b g
                                                            (2) 

 

Web particles at the entry to roller A will be in a stick zone. So: 

 

V V
1 a
                                                                                  (3) 

 

Expressions for A A and1 1 2 2, ,   are determined as follows. Consider an increment 

of the web that in its relaxed state has a length l0 cross sectional area, A0 and density, 0. 

When subjected to longitudinal stress, conservation of mass requires that the new values of 

area, A  and density,  must conform to the following equation.  

 

   A l A lo o o o ( )1                                                            (4) 

 

The symbol  is longitudinal strain. For infinitesimal lengths it is equivalent to the 

partial derivative of  with respect to x. Therefore by applying the principle of 

conservation of mass: 
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Boundary condition I can now be defined by substituting equations (3) and  (5) in (2)
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Equation (6) may seem unusual for a boundary condition. But, it fits quite neatly into 

the subsequent analysis and produces results that correlate well with the results of the 

O.D.E. model. It is responsible for the mass transport that transfers tension from the 

previous span. This is an established feature of the O.D.E. model.  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

THE O.D.E. MODEL 

 

Since the O.D.E. model has been confirmed by many years of use, it will be used to 

check the results of this analysis. Two versions are in use. One is nonlinear. It is used for 

cases such as startup of a process line where the web speed varies over a wide range. A 

linearized version is used for situations where the web speed changes by small amounts 

from a steady value. The linearized model will be used for the comparison. The linearized 

O.D.E. is: 

L
d t

dt
V V t V t V ta b b a


 2

0 1 0 2

( )
( ) ( ) ( )   b g            O.D.E. model              (7) 

where 
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A E
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A E
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( )
                                                                    (8) 

Va0 and Vb0 are constant, nominal values of roller speed. Va(t) and Vb(t) are small 

perturbations from Va0 and Vb0. For the purpose of this study Va(t) and 1 are held constant, 

Va0 = Vb0 = Vi . Vb(t) will be assumed to be a step input of magnitude, v. The solution 

with these conditions is: 
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                                           O.D.E. solution          (9) 

 

At large time scales, where the propagation behavior of tension disturbances is 

invisible, the P.D.E. model should behave like equation (9). 

 

THE P.D.E. MODEL 
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                                                               P.D.E.                    (10) 

 

The one-dimensional wave equation (10) will be used to model the web. It is 

commonly seen in connection with the transverse oscillations of a fixed string or the 

longitudinal oscillation of a solid bar. In the case of longitudinal motion, the constant C is 

a function of the Young's modulus and density. 

 

C
E




                                                                                                        (11) 

 

Provided that the strain never becomes compressive, a string under tension may be 

treated as a solid bar. Equation (10) is based on two forces acting on particles of the string 

- inertial forces due to acceleration and elastic forces due to the spatial derivative of the 

strain. Its derivation can be found in most acoustics textbooks and will not be repeated 

here.  

 

In the form shown above, the wave equation will not produce a solution 

corresponding to the situation described in Fig. 1. Application of the boundary conditions 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of the previous section will cause the portion of the web represented by the solution to 

move downstream. It will describe something like a flying carpet rather than a web 

moving over fixed rollers. The mathematical technique for handling this problem goes by 

many names - Euler description, Eulerian method, or Euler flux method. It is used in many 

contexts and is often misunderstood. Since it is central to this problem, its application will 

be described very explicitly. 

 

THE EULER DESCRIPTION 

 

Equation (10) is in a form known as the Lagrange description. It applies to a situation 

in which the parameter being calculated is associated with a point that is allowed to move, 

under the influence of physical laws, relative to the observer. This is the way normal way 

of thinking about dynamic problems. When applied to velocity or acceleration, it refers to 

what would be measured in the laboratory with a yardstick and stopwatch. 

The alternative to the Lagrange description, (L.D.), is the Euler description, (E.D.). 

In the E.D. the equations describing the physics are modified so that the point of 

observation is held fixed as the material moves past. This is done by using the chain rule to 

explicitly separate the time and position derivatives. For example, if T represents 

temperature in a material that is moving along the x axis with transport velocity, V, the 

relationship between the Lagrange and Euler derivatives is: 

 

DT

Dt

T

t

T

x
V








                                                                       (12) 

 

The Lagrange derivative is on the left. In fluid dynamics the term material derivative 

is used to emphasize that the Lagrange derivative is associated with a particular particle or 

piece of material. The first term on the right is the Euler derivative. It does not apply to a 

particular portion of material and includes none of the variation due to the transport 

motion. The last term adds the variation caused by transport motion.  

 

Most discussions of the Euler description leave a number of questions unanswered. 

  

1. Are E.D. variables "real"? For example, if web speed is measured at a fixed 

location using a friction wheel on a tachometer, is this an E.D. variable?  

2. If the E.D. is used to derive a P.D.E., should the final step be to convert the 

solution back to a Lagrange description? 

3. Should the auxiliary equations be be converted to an E.D. description? 

 

The following example will provide insight into these questions. It does not involve a 

P.D.E. and, therefore, does not reveal all the effects of using (12). But, it shows clearly an 

important aspect of the Euler description - that it implies a change in variables. The key to 

understanding this is to avoid thinking about a moving coordinate system. 

 

Imagine a long metal bar that is initially at rest and oscillating longitudinally with a 

standing wave of amplitude A. The variable  represents displacement of particles from 

their rest positions.  

 

 ( , ) cos( )sin( )x t A k x t                                                       (13) 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now, assume that the bar is put into motion along its axis with transport velocity, v. 

Assuming that the variable, x refers to the same position in space as it did before, [in all 

that follows, no reference will be made to a moving coordinate system]. the new position 

of a particle in the bar will be: 

 

l x t x t x t x t A k x t( , ) ( , ) cos( )sin( )     v v                     (14) 

 

The particle velocity for the moving bar is found by taking the time derivative of (14)

: 

v x t A k x t( , ) cos( )cos( ) v                                               (15) 

 

Equations (14) and (15) illustrate the flying carpet problem. Substituting x = xo and t 

= to into (15) does not produce the velocity of a particle located at xo. The location of the 

particle with this velocity is: 

 

l x t x t A k x to o o o o o( , ) cos( )sin( ) +v                                 (16) 

Equation (16) applies to a point that has moved along with the bar by an amount, vto .  

 

Replacing the x  variable with x tv  solves the problem. When this is done, 

equations (15) and (14) become: 

 

v x t A k x t t'( , ) cos( ( ))cos( )  v v                                     (17) 

 

l x t x A k x t t'( , ) cos( ( ))sin( )  v                                         (18)  

                                         

Now, the original vto term in (16) has been eliminated and -vto in the cosine term 

shifts the standing wave forward by that amount. Thus, the point of observation effectively 

remains fixed at x o while the bar moves forward.  

 

Equations (17) and (18) produce the correct values for velocity and position. But 

now, there is a problem with the time derivatives. If one attempts to calculate velocity by 

differentiating (18) with respect to time, the result is: 
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sin( ( )) sin( ) cos( ( )) cos( )v v v                (19) 

 

This is clearly not the same as (17). The first term shouldn't be there and the v term is 

missing. This is what the Euler description corrects. Because: 
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And, when this term is added to (19) the velocity of (15) reappears.  
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Thus, the Euler description can be interpreted as an adjustment resulting from change 

in the x variable to x - vt. 

 

Mathematicians may feel better if the example is generalized. Let, 

 

 L f x t ( , )                                        Lagrange description     (22) 

E f x t t vb g,                               Euler description           (23) 

 

If  (22) and (23) are viewed as a straightforward change of variable, then, by the 

chain rule: 
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Using the chain rule again: 
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So, using (25) in (24) leads to: 
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The answers to the questions posed at the beginning of this discussion are now 

obvious. 

 

1. Real world measurements are always Lagrangian. The Euler description is just a 

mathematical artifice associated with the use of partial derivatives under certain 

circumstances. This is true even if it produces terms that have meaning in other 

contexts. An example of this is the mixed derivative in equation (30). In the study 

of transverse oscillations it can be interpreted as the Coriolis acceleration. 

However, this does not change the main purpose of the technique - which is to 

facilitate the solution of a problem in which the point of observation is held fixed 

as the material moves past. 

2. If a P.D.E. is converted to an Euler description and then solved for a time 

derivative, such as velocity, the solution should be converted back to a Lagrange 

description using (12). 

3. The auxilliary equations must be subjected to the same change in variables as the 

P.D.E. 

 

A professional mathematician may find this exercise to be a tiresome illustration of 

the chain rule. I include it here because 1) I have not seen the Euler description described 

this way in the literature and 2) I found it essential to understanding the physical meaning 

of the operations of the next section. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be noted that the effect of the Euler description on a P.D.E. goes beyond 

replacing the x  coordinate with x tv . It changes the very nature of the problem. In this 

instance it creates a model in which the web is moving, yet has fixed boundaries. 

THE EULER DESCRIPTION P.D.E. 

 

Two changes will be made in the problem variables. First, they will be separated into  

a large steady value plus a small varying component. Second, an Euler description will be 

adopted. 

The longitudinal velocity of web particles will be assumed to consist of two parts - 

the axial transport velocity, Vi  plus a varying component, 




'

t
.  

Corresponding to the two velocities, there will be two components of strain - 

a constant component,  1 plus a varying component 




'

x
.  

The Euler description is applied to the varying component of the velocity. 
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So the complete transformation of variables is:  
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The "E" and "L" subscripts identify variables as Euler or Lagrange. The "E" subscript 

will be understood to encompass the separation of constant and varying components as 

well as the Euler description. This practice will be followed throughout the remainder of 

this paper.  

 

Substituting (27) and (28) into (10): 
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Performing the operations indicated in (29) produces the P.D.E. model. 
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                  The E.D.  P.D.E.          (30) 

 

Equation (30) was presented in one of the earliest traveling string papers by Sack [2]. 

It is the most common form of the one-dimensional wave equation for a moving medium. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is important to keep in mind that any solution of (30) for a time derivative must be 

transformed back to a Lagrange description before comparing it to laboratory results.  

 

CONVERSION OF THE BOUNDARY AND INITIAL CONDITIONS TO AN 

EULER DESCRIPTION 

 

The equations will be presented first in their most natural form - the Lagrange 

description. Then, equations (27) and (28) will be used to transform them into an Euler 

description. 

At time zero the web will be assumed to be running at a uniform speed of Vi  and 

strain 1 . This implies that the circumferential velocity of roller A is Vi . The 

circumferential velocity or roller B is assumed to be Vi  plus a forcing 

function f t( ) beginning at time zero. 

 

 

 

First, the Lagrange versions: 
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 L (0,0) 0                                                 Initial condition IV, (L.D.)         (36) 

 

 L L L( ,0) 1                                            Initial condition V, (L.D.)          (37) 

 

The initial conditions II, III and V need a little justification. The particular problem 

that is going to be analyzed assumes initial conditions corresponding to a web with initial 

strain 1. The initial displacements must exist as a consequence of that strain. If this seems 

odd, think about the case of transverse displacements in a fixed string. 

 

Now for the Euler versions: 
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 L L( ,0)0                                                  Initial condition V, (E.D.)         (44) 

 

THE SOLUTION 

 

Laplace transforms will be used to integrate the P.D.E. The solution follows a 

procedure described by Churchill in his book  "Operational Mathematics" [14].  

 

The first step is to take the time transform of the P.D.E.,(30). 
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The next steps will be clearer if the following change of variable is made. 

 

U x s x tE( , ) ( , )=L                                                                   (46) 

 

The last term of (45) can be modified to facilitate the analysis. It can be shown that 

an interchange in the order of differentiation with respect to x and integration with respect 

to t leaves the value unchanged. Thus, 
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Substituting (46), (47), (41) and (42) in (45) produces a relationship that can be 

treated as an ordinary differential equation in one variable. 
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The solution of  (48) is: 
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For this problem, strain is more important than displacement. To obtain strain, (49) is 

differentiated with respect to x . 
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The inverse transform of (51) solves the problem provided c1 and c2 can be 

evaluated. They are found from the boundary conditions. 

 

Taking the time transform of boundary condition I: 
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Substituting (49), (51) and (43) in (52) with x  0  produces: 
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Taking the time transform of boundary condition II: 
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Substituting (49), (51) and (44) in (54) with x = L produces: 
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Equations (53) and (55) can now be solved simultaneously for c1 and c2. 

Substituting these values along with (50) into (51) produces: 
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The denominator of (56) prevents a straightforward use of a table of transforms.  In a 

similar situation Churchill [14] uses the following series expansion. 
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 are both less than 1. (There is no requirement to consider the 

transform variable, s as complex in this problem. Therefore, it can be considered as real 

and positive). Applying (58), to equation (56) converts it to a form that is easily inverted.  
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The final step is to return to a Lagrange description by applying equation (28). 
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Equation (60) will now be solved for a variety of driving functions. 

   

STEP FUNCTION INPUT 

 

The first driving function to be analyzed will be the unit step, ( )t . The step starts 

at t = 0 and adds a small increment, v to the initial velocity Vi. 

 

f t v t( ) ( )                                                                            (61) 

 

The transform of f(t) is: 
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Substituting (62) into(60) and inverting produces the following solution. 
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For a given value of t, this is a finite series because the time-shifted unit step 

functions (Heaviside functions) are replaced by zero when their arguments become 

negative. So, for t less than some tmax: 
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INTERPRETATION OF EQUATION (63) 

 

Although equation (63) is straightforward for purposes of calculation, it is hard to 

visualize. The diagram in Fig. 2  may help. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  -  A diagram of equation (63) 

 

The bars in the chart can be viewed as time-shifted step functions. The bars are 

grouped vertically to correspond to the two terms of equation of (63). The bottom bar in 

each group represents the step function for the summation index, n = 0. The next bar up is 

for n = 1, etc. The leftmost column shows the amplitude coefficient of each step. On the 

horizontal axis there are two scales. One is for time. The other is for position. The position 

axis starts at x = L  goes to x = 0 and then back to L in a repeating pattern. The time scale 

advances along with x at a rate consistent with the propagation velocity, C+Vi or C-Vi. In 

the bottom third of the chart, equations show how the summation progresses with time. 

Each series is formed by adding up the terms indicated by the bars in its respective 

column. For example, during the time interval from 2T1+T2 to 2T1+2T2 the leading edge of 

the disturbance is in the process of moving from 0 to L. It has already gone through three 

previous cycles, advancing from L to 0, 0 to L, L  to 0 again. In each cycle the strain 

grows by an amount shown by the last term in the series.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.99369710
4

5.00666710
4

 x L t( )

0.50 t

0 0.1 0.2 0.3 0.4 0.5
5 10

4

5.5 10
4

6 10
4

Tim e (Sec onds)

S
tr

ai
n

 

It will be noticed that the amplitude of the disturbance changes slightly on reflection 

at x0 . It changes by the ratio of n+1/ n. At x = L the ratio is 1. 

COMPARISON OF RESULTS WITH THE O.D.E. MODEL 

Comparison of the P.D.E. model (63) with the O.D.E. model of equation (9) shows 

that on large time scales (large compared to the time for disturbances to propagate through 

the span) they behave alike. Graphs in Figs. 3 and 4 illustrate an example. Parameters for 

both models are shown below (in the P.D.E. model x L ). 

 

Vi = 10 m/sec c = 1500 m/sec         L = 1 m 1  = .0005 v = .0001*Vi

  

Fig. 3 shows the step response of the P.D.E. model. Fig. 4 shows the percent 

difference between the two. On this time scale they are in very close agreement. The graph 

in Fig. 4 appears solid because the error makes a cycle once every 1.33 milliseconds. This 

is due the stair-like behavior of the P.D.E solution.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  -  Step response of the P.D.E. at x L , Vi = 10 m/sec, C = 1500 m/sec,                 

L = 1 m, 1  = .0005, v = .0001*Vi 
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       Figure 4  - Difference between the O.D.E. and the P.D.E. solutions 

 

Fig. 5 shows a portion of the P.D.E. model data (solid line) at higher resolution. It is 

superimposed on the O.D.E. data (dashed line). The stair-like shape of the P.D.E. graph is 

due to the propagation delay. The strain disturbance initiated at roller B travels through the 

web span toward roller A. The strain doesn't change at a particular point in the span until 

the disturbance reaches it at intervals of 1.33 milliseconds. In this case the P.D.E. data is 

shown at x = L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5  -  High-resolution view of the first .015 seconds of the P.D.E (solid line) and 

O.D.E. (dashed line) solutions. 

 

Fig. 6 is shows a different view of the solution. The abscissa is distance along the 

span instead of time. The disturbance is shown at four different times. It starts at x = 1 

meter and progresses to the left until it reaches the end at x = 0 where it is reflected. It 

takes .671 milliseconds to travel this distance. The upper ramp at the left end has been 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.01324510
4

5 10
4

 x x .0001 s( )

 x x .0003 s( )

 x x .0005 s( )

 x x .0007 s( )

1
8.88178410

16 x

0.2 0 0.2 0.4 0.6 0.8
4.995 10

4

5 10
4

5.005 10
4

5.01 10
4

P osition (Meters)

S
tr

ai
n

reflected and is moving back to the source. It will take .662 milliseconds to make the 

return trip. This action continues with the strain rising in progressively smaller increments 

on each cycle until it reaches its steady state value of Vi/Vi  + 1.  The velocity of the 

disturbance is equal to C-Vi  traveling upstream and C+Vi downstream. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6  -  Progress of a strain step-disturbance along the span. Strain is shown at .1, .3, .5 

and .7 milliseconds. It starts at x = 1 meter and progresses to the left until it reaches the 

end at x = 0 where it is reflected. It takes .671 milliseconds to travel this distance. The 

upper ramp at the left end has been reflected and is moving back to the source. It will take 

.662 milliseconds to make the return trip. 

 

EXPONENTIAL BEHAVIOR OF P.D.E. (63) 

While the example in the previous section is very strong evidence for agreement 

between the P.D.E. and the O.D.E., it is not proof. What is needed is to demonstrate 

mathematically that if C is allowed to become arbitrarily large, equation (63) becomes 

equivalent to (9). 

 

The first step is to show that for large values of C. 
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Taking the natural log of the left side of the previous expression: 
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The quantity ln(1 + z) may be replaced by z, because:  

 

ln 1
2 3 4

2 3 4

      z z
z z z

zb g                 if z1                    (67) 

 

So, expression (66) becomes: 
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Equation (69) can be converted to time by replacing n with: 
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Equations (69) and (70) can now be used with (63)to calculate the shape of the 

amplitude envelope. 
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Substituting (70) into (69) produces another relationship that will be useful later. 

 

 
n

t

L c

V
i

L
t

e 
 

2 /                                                                 (72) 

 

RESPONSE TO A SINGLE PULSE 

 

  What happens when a single velocity pulse occurs at roller B? In the case of a fixed 

string without any damping, the pulse would travel back and forth between the supports 

indefinitely. Intuition suggests that the traveling string will be different because material is 

flowing out of the span at roller B and being replaced with new material at roller A. To 

answer this question a pulse of amplitude v and length t1 will be used in equation (60). 

The transform for this is: 
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Substituting in (60) and inverting: 
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Fig. 7 -  A single pulse at three different times. It advances in the same manner as the step 

input. The first pulse on the right has just left roller B. The pulse on the left shows the 

same pulse being reflected from roller A. The pulse in the middle shows it after it is 

reflected and is returning to B. 

 

The results are illustrated in Figs. 7 and  8, using parameters similar to the those for 

the step input. Fig. 7 shows a single pulse at three different times. It advances in the same 

manner as the step input, going from roller B to roller A, where it is reflected back to B. 

Then, it is reflected again and the cycle is repeated. Fig. 8 shows the pulse amplitude 

envelope over one second. It changes as expected. An investigation, using results from the 

previous section, shows that it decays exponentially from an initial amplitude of v/C. At 

the ends of the span it momentarily doubles during reflection. The time constant is L/Vi .  
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Fig. 8 - Decay envelope of a single pulse over aperiod of 1 second 

 

A descriptive term for this decay is transport damping. 

 

Decay of the pulse illustrates an important feature of wave propagation in materials 

moving over fixed supports. Energy in the material between the supports is not conserved. 

Miranker [11], using an ingenious technique, was the first to point out that this happened 

for transverse oscillations. Wickert and Mote [15] later analyzed the phenomenon and 

showed the energy transfer involved the supports. It is evident that similar conclusions 

apply to longitudinal strain variations. This is easy to see if one thinks about what happens 

while a pulse is being reflected at a roller. At that time the roller experiences a change in 

torque due to the tension change. And, since the roller is rotating, work is done, either on 

the roller or on the web. Additionally, some energy is transferred downstream due to 

tension transfer across roller B. 

 

In addition to the decay predicted by this idealized model, real web materials will 

have viscoelastic damping. So, it is safe to assume that a single, short pulse will be 

attenuated quickly. 

 

RESPONSE TO REPETITIVE PULSES 

 

The solution for this problem follows a slightly different pattern than with the other 

inputs. The Laplace transform for a repetitive pulse train of amplitude v, period t2 and 

pulse length, t1 is: 
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The denominator of the forcing function requires the same treatment as in (56).  

Using (58) a second time leads to a double summation. 
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A particularly interesting case arises when the repetition period is equal to the propagation 

delay, L/(C-Vi)+L/(C+Vi). Then, each new pulse is met by the reflection of the one before. 

The amplitude reduction due to transport damping is greatly exceeded by the 

reinforcement of the new pulse. Using such a pulse train, with the other parameters the 

same as the previous example, leads to the result illustrated in Fig, 9. The pulses grow 

exponentially to an amplitude of Vi/Vi  with a time constant of L/Vi . The final amplitude 

is the same as if the pulse had been a step.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 - Repetitive pulse with period = L/(C-Vi)+L/(C+Vi). The pulses grow exponentially to an 

amplitude of Vi/Vi  with a time constant of L/Vi . The final amplitude is the same as if the pulse had 

been a step. For this example:Vi = 10 m/sec , C = 1500 m/sec, L = 1 m, 1  = .0005, v = .0001*Vi ,       

t1  = .000067 sec      t2 = L/(C-Vi)+L/(C+Vi) = .00133 sec. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This clearly has implications for a web process. An eccentric or unbalanced roller could 

produce a disturbance once each revolution. If the web speed and span length are such that 

the period of the disturbance is an integer fraction (or if damping is low, an integer 

multiple) of L/(C-Vi)+L/(C+Vi) the pulse may be amplified. Even a pulse which is 

attenuated by the viscoelastic damping of the web material may be amplified to many 

times that of a single pulse. 

 

SINUSOIDAL INPUT 

The transform for a sinusoidal input is: 
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Substituting in (60) and inverting: 
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The input will reinforce itself in the same manner as a repetitive pulse when: 

 

 


2
2

2 2

n
C Vo

LC

e j
         n = 1, 2, 3 …                                    (80) 

 

At these frequencies the amplitude behaves in a manner similar to repetitive pulses. It 

grows exponentially to an amplitude of Vi/Vi  with a time constant of L/Vi. 

 

HIGH SPEED BEHAVIOR 

 

As the transport speed, Vi approaches C, equation (80) approaches 0 for all n. Also, the 

upstream propagation velocity, C-Vi approaches 0. This clearly indicates that something 

unusual happens at Vi = C. Could one see a standing wave of zero frequency? Study of the 

traveling string literature suggests that a more sophisticated, nonlinear model is needed at 

these speeds. Furthermore, there are many other phenomena that will become significant 

as speeds increase. The answer to this question should be postponed pending further study. 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSIONS 

 

This highly idealized model has two principal uses. First, it is a necessary step 

toward more realistic models. Second, it provides a framework for understanding tension 

problems whose causes may have been unrecognized in the past.  

 

Some of the shortcomings in the present model are:  

 

1. There is no provision for the variation in mass per unit length in the span. This is 

important for modeling mass flow and is provided only at the upstream boundary in 

the present model. This can be done. But, it leads to a nonlinear equation requiring 

numerical methods for its solution. Lack of this feature will probably not affect the 

general behavior at low speeds. 

2. There is no provision for viscoelasticity. This will obviously have a strong effect on 

the shape, velocity (dispersion) and amplitude of disturbances in polymer materials. 

Metals will be much less affected. This can also be modeled but it requires a higher 

order nonlinear equation. 

 

3. No testing has been done.  

 

The model suggests that the following phenomena may be seen in real applications. 

They will undoubtedly be attenuated and distorted by viscoelasticity, nonlinearities and 

friction. But, they will probably be observable. 

 

1. The strain pulse produced by a brief (of the order of L/(C-Vi)+L/(C+Vi ) speed 

difference between two rollers  will be very small. The amplitude will be of the order 

of Vi/C times the amplitude that would be produced if the speed difference were 

present continuously. 

 

2. The velocity of a disturbance is equal to C-Vi traveling upstream and C+Vi 

downstream. C may be a function of wavelength due to nonlinearities and 

viscoelasticity. But, for a single wavelength the relationship holds. 

 

3. When the difference in web speed between two rollers is increased rapidly to a new 

steady value, the initial strain will be only of the order of Vi/C. This change will travel 

at the speed of sound to the nearest roller where it will almost double in size and be 

reflected back toward the source. At the source it will be reflected again. This action 

will continue, with the strain rising in progressively smaller increments on each cycle, 

until it reaches a steady state value of v/Vi. The rise will be approximately 

exponential with a time constant of L/Vi . At large time scales, where the steps are 

imperceptible, the behavior will match the O.D.E. model.  

 

4. A single brief pulse (shorter than the time for the pulse to travel up the span and back 

again) will be damped by the transport motion. The pulse will be reflected back and 

forth. But, unlike a pulse in an ideal fixed string, it will decay a little each cycle until 

it disappears. This "transport damping" along with viscoelasticity and friction will 

help remove energy from disturbances. An example of such a pulse is a sudden slip on 

a roller due to passage of a wrinkle or a splice. 

 

5. A repetitive disturbance can be amplified if the period is an integer fraction of L/(C-

Vi)+L/(C+Vi). If damping is low it may be amplified even at integer multiples of the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

delay time. It will start with low amplitude and grow exponentially. The time constant 

will be L/Vi. The final amplitude will be the same as if the pulse had been a step. An 

example of a repetitive pulse source is the cyclic disturbance of an embossing roller. 
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