
 
 

INTRODUCTION 

In “The Effect of Mass Transfer on Multi-Span Lateral Dynamics of Uniform Webs” [1], it is 
shown that behavior of Shelton’s lateral dynamic beam model [2] can be explained as the 
interaction of the normal entry equation and mass transfer between spans. The implications of 
mass transfer are discussed further in “The Connection Between Longitudinal and lateral Web 
Dynamics” [3] 

In this paper, the mass transfer idea is generalized and used to develop a dynamic model that 
combines lateral and longitudinal (tension) behavior. Nonlinear elasticity theory is used to model 
the web as a two-dimensional membrane in a state of plane stress. Boundary conditions at the 
downstream roller are: 1) the normal entry equation, used in lateral models, and 2) the continuity 
equation, used in tension models. 

Results from the new model, such as lateral force, lateral position, face angle and slope are 
shown to agree closely with the static and dynamic beam models developed and tested by Shelton 
[2]. Comparisons are also made with the dynamic beam model from reference [1] that includes the 
effect of shear. 

Information that is unique to the two-dimensional model is presented and discussed, such as,   
1. Transient disturbances in tension at the downstream roller caused by pivoting and shifting 

of rollers. 
2. Transient gradients in lateral velocity that can cause wrinkling. 
3. The effect of tension change on lateral position.  

NOMENCLATURE 

A cross sectional area of web 
dshift lateral shift of roller 
E elastic modulus 
G shear modulus 
h thickness of web 
I area moment of inertia 
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L span length 
Q mass flow rate 
t time 
T tension in units of force 
u x displacement of deformed web 
v y displacement of deformed web 
Vo   web velocity in machine direction 
x distance along length of web 
y lateral displacement of web 
y0 lateral web displacement at upstream roller, relative to ground 
yL lateral web displacement at downstream roller, relative to ground 
z lateral displacement of roller relative to ground 
β boundary defect angle 
η y coordinate of deformed web 
εxx strain in x direction 
εyy strain in y direction 
εzz strain in z direction 
θr angle of roller axis 
γxy shear strain 
μ Poisson’s ratio 
ϕ face angle, rotation of cross section or bending angle 
ρ density 
σxx stress in x direction 
σyy stress in y direction 
σzz stress in z direction 
τxy shear stress in x-y plane 
ξ x coordinate of deformed web 
ψ shear angle 
ωz rotation in x-y plane 
0 subscript indicating value of variable at x = 0 
L subscript indicating value of variable at x = L 

A 2-DIMENSIONAL MODEL THAT COMBINES LATERAL AND LONGITUDINAL 
BEHAVIOR 

Plane Stress Definitions 
The following equations for plane stress are taken from Novozhilov’s simplified nonlinear 

theory for small rotations [4]. 
Classical linear elasticity theory assumes that rotations are so small that their effects are 

negligible. This is not true in web handling problems where longitudinal tension affects the elastic 
curve. The z xxω σ  term in equilibrium equation (12) is particularly important. Without it, the effects 
of longitudinal tension on the elastic curve will not be reflected in the results. Its net effect in web 
analysis is very similar to the second order derivative term in Shelton’s beam theory differential 
equation for the elastic curve of a web under tension at a misaligned roller [2], (Pg. 58).  

Some applications of nonlinear elasticity also require inclusion of the effects of rotation on 
strains. However, for analysis of a misaligned roller this effect is sufficiently small that the zω  terms 
in equations (2) and (3) may be safely ignored. 



 
 

Although the stresses and strains defined below are identified by subscripts x, y and z, it is 
understood that these quantities are aligned with the corresponding curvilinear coordinate system of 
the deformed web. 

Displacements in the direction of the reference coordinates x and y are defined as u and v, 
respectively and, 
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2z

v u
x y

ω
 ∂ ∂
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−
= +
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Cartesian coordinates of the deformed web are,  

          ξ = x + u          (6)                                                η = y + v   (7) 

Assuming Hook’s Law, the stresses may be expressed in terms of strains, Poisson’s ratio, μ, 
and modulus of elasticity, E, as follows. 

The x-axis stress is:                   21xx xx yy
Eσ ε µε
µ

 = + −
 (8) 

The y-axis stress is:           21yy yy xx
Eσ ε µε
µ

 = + −
 (9) 

The shear stress is:             
2(1 )xy

E u v
y xµ

τ  ∂ ∂
= + + ∂ ∂ 

 (10) 

The equations of equilibrium are: 

 0xx z xy xy z yyx y
σ ω ω στ τ∂ ∂   − + − =   ∂ ∂

 (11)

 0yy z xy xy z xxy x
σ ω ω στ τ∂ ∂   + + + =   ∂ ∂

   (12) 

The transformations from undeformed to deformed cartesian coordinates are 

                   1 u ud dx dy
x y

ξ ∂ ∂ = + + ∂ ∂ 
           1v vd dx dy

x y
η

 ∂ ∂
= + + ∂ ∂ 

 (13) 

The equation of continuity 
The mass flow rate Q through an increment of cross-sectional area ( ) ( )1 1yy zzdy hε ε+ +   in a 

moving web is, 
 ( ) ( )1 1o yy zzQ V dy hρ ε ε= + +   (14) 

where, ρ is the density of the deformed web, Vo is the local velocity in the direction of the x 
coordinate, dy is an increment of width in the relaxed web and h is thickness. The thickness h is 
small enough relative to other dimensions of the web that a condition of plane stress can be 



 
 

assumed to apply. The density ρ varies with deformation, so it’s necessary to make the following 
conversion. 

 
( )( )( )1 1 1

o

xx yy zz

ρ
ρ

ε ε ε
=

+ + +
  (15) 

where ρo is the density of the relaxed web. 
The mass flow rate Q at any point is, therefore, 

 
( )1

o
o

xx

V
Q h dyρ

ε
=

+
  (16) 

For purposes of tension analysis, systems are usually modeled as shown in Figure 1. The web 
is treated as a straight ribbon of constant width w and thickness h. Strains εx1 εx2 and εx3 are 
assumed to be constant from one roller to the next and driven rollers determine the velocities, V1 
and V2, at the ends of the span. The length of wrap on the rollers is assumed to be negligible 
compared to the length of the span and lateral behavior is ignored. 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1 
Single span system 

 
The difference in the mass entering and exiting the control volume in a time increment dt 

must be equal to the change of mass inside it. Therefore, 
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ρ ρ ρ
ε ε ε

= −
+ + +∫   (17) 

Under those assumptions, canceling common factors and using the small strain approximation 
1/(1 + ε) = (1 - ε), equation (17) becomes, 

 ( ) ( ) ( )2 2 1 1 2 2
0

(1 ) 1 1
L

x x x x
d ddx L V V
dt dt

ε ε ε ε− = − = − − −∫   (18) 

Equation (18) appears as the governing equation in many of the papers on tension control [5, 
6].  

For a 2D elasticity model, incorporating lateral bending, it is necessary to go back to equation 
(17) and think about what to do about the integral on the left side when εx2 is a function of x, y. 
Fortunately, the features of plane stress elasticity theory provide an easy answer.  

Looking again at equation (18), the -εx2L term is equal to the amount by which the mass of the 
span differs from what it was when it was relaxed. However, it is also the amount by which the 



 
 

longitudinal stress causes the length of the web to differ from the length of the control volume. 
Therefore, in the context of plane strain elasticity theory, εx2L is simply the x-direction 
displacement u at x = L, which is found by solving the equations of equilibrium (11) and (12). 
This suggests that it might be possible to express the continuity equation as equation (20) and use 
it as a boundary condition. In fact, if εx2 is replaced with expression (2) from elasticity theory, the 
result is, 

 
0

1
L

L
u dx u
x
∂ − = − ∂ ∫   (19) 

and the continuity equation for a narrow strip of width dy becomes, 

 ( ) ( ) ( )1 0 21 1L x xL
d u V V
dt

ε ε− = − − −   (20) 

where uL is the x-direction displacement at x = L due to mass flow while εx0 and εxL are the x-
direction strains at x = 0 and x = L respectively.  

The displacement uL is a measure of mass, so in the following discussion it will sometimes be 
referred to as the mass it represents rather than displacement. 
In the unified model, equation (20) is used as one of three sources of downstream boundary 
displacement. The other sources are roller motion and initial uniaxial strain.  

The continuity equation and boundary condition for the u displacement 
In the unified model, roller motion contributes both directly and indirectly to the x-direction 

displacement, u. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 
Definitions for control volume 

In Figure 2, a simple example of boundary motion is illustrated. The control volume 
boundaries are indicated by double dash lines. The downstream end of the volume coincides with 
the line of entry to the roller when the web is in a state of initial uniaxial strain εo. To simplify 
discussion, the simplest possible case is considered where it is assumed that the roller abruptly 
moves a distance uroll 1

 in the x direction while remaining parallel to the upstream roller. The 
control volume remains fixed at x = L. The roller displacement uroll causes the strain in the span to 
increase and mass in the control volume to decrease. The strain change simultaneously causes the 

                                                        
1 This kind of motion wouldn’t occur in practice. 



 
 

continuity equation to begin restoring the mass that has moved outside the control volume by 
creating a negative displacement uL. The magnitude of uL continues to grow in the negative 
direction and the mass it contributes to the span increases until it reaches a steady state where it is 
equal to -uroll. At this point, the strain in the span is restored to its original value of εo and the net 
displacement εo⋅L . 

So, the complete boundary condition for x-direction displacement u at x = L for a roller that is 
displaced by a distance uroll is, 

 boundary L roll ou u u Lε= + +   (21) 
The continuity equation (22) supplies part of the x-direction boundary condition at x = L. 

 ( ) ( ) ( )1 0 21 1L x xL
d u V V
dt

ε ε− = − − −   (22) 

For a realistic application in which the roller pivots and/or shifts laterally, the quantity uroll 
becomes a function of pivot angle θr, y, time and shift dshift of the pivot point. The lateral 
displacement vL accounts for movement of the web relative to the pivot point. So, to model rollers 
that pivot and shift, uroll can be defined as, 

 
( )roll r L

r pivot ramp shift ramp

u y v z
f z d f

θ
θ θ

= + −

= =
  (23) 

where, θpivot is the maximum extent of roller pivot angle, vL is lateral displacement of the web at x 
= L and dshift is the maximum extent of the lateral shift of the roller. The function framp is an s-
shaped ramp function that smoothly transitions from zero to unity in a specified rise time. 

Earlier use of the continuity equation in lateral dynamics 
Michael Leport, in 1985, set the time derivative of (18) to zero and used it to establish a 

steady state boundary condition for a concave roller model [7]. The author did the same thing in 
2005 [8]. 

The normal entry equation and boundary condition for the v displacement 
When doing two-dimensional elastic analysis of moving webs there is a conceptual problem 

that doesn’t arise when using beam theory. In beam theory there is no confusion about the 
definition of a quantity like slope, because the model is essentially one-dimensional, and we talk 
about slope of the centerline or of the neutral axis. But, in a two-dimensional model using 
elasticity theory, where a quantity like slope must be applied at each point across the width of the 
web, the definition is less obvious. The quantity that’s needed is the instantaneous direction of the 
transport velocity of the deformed web. This can be found by first defining MD motion 
trajectories in the relaxed web as straight lines, parallel to the centerline. The slopes of these lines 
in the deformed web, then become everywhere instantaneously tangent to the velocity field of the 
web. In fluid dynamics, these would be called streamlines. 

The normal entry equation (24) in the context of elasticity theory is, 

 2
L L

r
dv dzV
dt dt

η
θ

ξ
∂ 

= − + ∂ 
  (24) 

where vL2 is the lateral displacement at x = L, θr is the roller angle and ∂ηL/∂ξ is the slope of a 
tangent to a streamline in the deformed web at x = L. Using relations (13), 
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Since the y variation of the streamline of the undeformed web is zero, (25) reduces to, 
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And (24) becomes, 

 
1

2 1L L
r

v v u dzV
t x x dt

θ
− ∂ ∂ ∂ = − + +  ∂ ∂ ∂   

  (27) 

Equation (27) is one of two parts of the y-direction boundary condition, 
 boundary L ov v yµε= −   (28) 
This is the normal entry equation for the elasticity model. It provides the y-direction boundary 

condition at x = L and is applied at each point across the width of the web. The roller angle θr and 
z have the same definitions as in equation (23). 

Complete model 
The equations of equilibrium: 

 0xx z xy xy z yyx y
σ ω ω στ τ∂ ∂   − + − =   ∂ ∂

 (29)

 0yy z xy xy z xxy x
σ ω ω στ τ∂ ∂   + + + =   ∂ ∂

   (30) 

Normal entry equation: 

 
1

2 1L L
r

v v u dzV
t x x dt

θ
− ∂ ∂ ∂ = − + +  ∂ ∂ ∂   

  (31) 

Continuity equation: 

 ( ) ( ) ( )1 0 21 1L x xLu V V
t

ε ε∂
− = − − −

∂
  (32) 

x-direction boundary condition: 
 boundary L roll ou u u Lε= + +   (33) 

 
( )( , )roll r L

r pivot ramp shift ramp

u y t y v z
f z d f

θ
θ θ

= + −

= =
  (34) 

y-direction boundary condition: 
 boundary L ov v yµε= −   (35) 
The last two equations in (34) can be manipulated to create a pivot-only or shift-only roller. 

They can also be used to create a configuration in which a roller is simultaneously shifted and 
pivoted to create a “steering” guide. Parameter θr is the maximum extent of a roller pivot motion 
and dshift is the maximum extent of a roller shift. The function framp is an s-shaped unit ramp 
function with adjustable rise and delay times.   

Implementation in FlexPDE 
FlexPDE is a general purpose partial differential equation solver. It turns a description of a 

system of partial differential equations (steady state or time dependent) into a finite element 
model, solves the system, and presents graphical output of the results. 

 Figure 3 shows a portion of the script used to produce the data for the pivoting roller in the 
next section2. This is for a web that is initially in a state of uniaxial stress between parallel rollers. 

                                                        
2 The complete script is available on request. 



 
 

At t = 0 the downstream roller is pivoted by angle ang using a smooth-cornered ramp function 
called pos having a rise time of 0.1 second and an amplitude of 1.0. The web in the previous span 
is assumed to be in a state of uniaxial strain, εo.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3 
FlexPDE script showing equations, domain definition 

 and boundary conditions 

The upstream boundary conditions assume uniaxial strain in the previous span. Displacements 
are fixed at u = 0 and v = -yεoμ, where μ is Poisson’s ratio. These conditions are specified in the 
first segment of the “boundaries” section.  

Theta_r is defined as the ang⋅pos(0.1, 0), where ang is the maximum extent of the roller pivot 
and pos is a smooth-cornered ramp function with an amplitude of 1 and rise time of 0.1 sec. 

d_shift is the maximum extent of shift of the roller pivot point. It is set to zero in this case. 
z is d_shift⋅pos(0.1, 0) 
There are four relationships in the “equations” section. The first two are the nonlinear 

equations of equilibrium for small rotations. The second two are the normal entry and continuity 
equations. Ordinarily the relationships used for boundary conditions are specified in the 
“boundaries” section. However, since the normal entry and continuity equations define ∂v/dt and 
∂u/dt, they must be placed in the “equation” section where they will be integrated to make values 
of v and u available. These special values of u and v are given names U_b and V_b to set them 
apart from the main problem variables. 



 
 

In the boundaries section, U_b and V_b are used in the definition of u and v at the downstream 
boundary. The definition of u consists of three parts 

1. exo ⋅L for the initial uniaxial stress. 
2. -Theta_r(y+V-z) for the change in roller angle 
3. U_b for mass change. 
The definition of v has two parts. 
4. -y⋅exo⋅nu for the Poisson contraction due to the initial uniaxial stress. 
5. V_b for lateral displacement caused by the roller. 

COMPARISON OF THE 2D ELASTICITY MODEL WITH MODELS BASED ON BEAM 
THEORY 

The new model has not been tested experimentally; however, its behavior can be compared to 
the E-B static and dynamic models tested by Shelton in his dissertation. It can also be compared to 
a model that is closely related to Shelton’s, but includes the effect of shear, (Timoshenko beam 
model) described in “The Effect of Mass Transfer on Multi-Span Lateral Dynamics of Uniform 
Webs” [1]. 

To enable comparison of the one-dimensional and two-dimensional models, the 2D elasticity 
values have been averaged over the width of the web. 

Comparisons with Timoshenko beam model 
The time histories in the next four figures compare outputs from the Timoshenko dynamic 

beam model with the new 2D elasticity model for a roller pivot of 0.001885 radians. The input 
motion was a ramp function beginning at t = 0 with a rise time of 0.1 second. 

The application parameters are the same as Shelton’s first set of experimental parameters 
listed on page 45 of his dissertation [2]. Tension = 36.7 Lbf, Span length = 19.5 inches, Width = 
9.03 inches, thickness = 0.009 inch, KL = 0.2364, modulus = 450,000 psi. Line speed was 100 
in/sec. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         (a) Beam model                       (b) 2D Elasticity model 

Figure 4 
Lateral position, pivoting roller 

 



 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                 (a) Beam model         (b) 2D Elasticity model 

Figure 5 
Slope, face angle and shear, pivoting roller 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
                                 (a) Beam model         (b) 2D Elasticity model 

Figure 6 
Lateral velocity, pivoting roller 

 
 
 
 
 
 
 
 
 



 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                               (a) Beam model         (b) 2D Elasticity model 
 

Figure 7 
Lateral force, pivoting roller 

Comparison with Shelton’s steady state model 
The curves in the graph of Figure 8 show the evolution over time of the elastic curve of the 

web centerline in the 2D elasticity model. After five time constants, it coincides so closely with 
Shelton’s steady state solution that the two curves are indistinguishable. Application parameters 
were the same as used for the previous example. 

 
 
 
 
 
 
 

 

 

 
 
 
 

 

 

Figure 8 
Comparison with Shelton’s steady state model  

after 5 time constants. 



 
 

Comparison with Shelton’s dynamic model 
To verify his E-B dynamic model, Shelton ran four dynamic tests in which he applied a 

sinusoidal displacement to a downstream roller and measured the lateral displacement of the web. 
In two of them, a downstream roller was shifted on inclined linear bearings so that it 
simultaneously pivoted in the plane of the web about an instant center in the entering span (an 
arrangement commonly used in web guides). The dashed curve in Figure 9 shows the predicted 
amplitude response for one of them. This same curve is shown in Figure 4.7.7 of his dissertation 
along with the experimental data points that confirmed its accuracy.  

Sinusoidal inputs were applied to the 2D elasticity model at the same frequencies used by 
Shelton for his tests and allowed to run for five time constants. The resulting amplitude ratios are 
plotted on the graph as black dots. It is apparent that the two models agree closely. 

Parameters for Shelton’s test are: Span length = 63 inches, Width = 1.5 inches, Thickness = 
0.009 inches, Modulus = 510,000 psi, Tension = 30 Lbf, Speed = 100 inches/sec, Instant center 
radius = 18.09 inches. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9 
Comparison with Shelton’s Dynamic E-B model  

for an oversteering guide roller 

Comparison with Shelton’s steady state test data 
Shelton tested his steady state E-B model by measuring lateral force at the downstream roller.  

Although the main purpose of the measurement was to validate the zero-moment boundary 
condition, he chose to use lateral force as a proxy because it was believed to be much easier.  

 Comparison of results for all 21 of Shelton’s steady state tests are shown in Figure 11 below. 
To establish validity of his 4th boundary condition (zero moment at x = L) he compared the 
measured value of lateral force at x = L (column 5) with the value predicted by his model (column 
8). The value predicted by the Timoshenko model (based on mass transfer) is shown in column 10. 
The value predicted by the 2D elasticity model is shown in column 12. The percent errors are 
calculated as 100(model NL – experimental NL)/experimental NL. 

There is no mention of the line speed used for the tests. I assumed 100 in/s. 
Values from the Timoshenko and 2D elasticity models were taken after 5 time constants 

(L/V). 



 
 

1 2 3 4 5 6
L/W T (Lbf) L (inch) W (inch) θr (rad) θcr (rad)
2.16 36.7 19.5 9.03 0.001885 0.00215
1.62 36.7 14.625 9.03 0.0014138 0.00162
1.08 36.7 9.75 9.03 0.0009425 0.00108
0.54 36.7 4.875 9.03 0.0004713 0.000541

2D elasticity model
97

Parameters

NL (Lbf)
2.46
3.28

8
SS E-B beam model Dynamic Tim. Model

NL (Lbf)
2.21
2.74

NL (Lbf)
2.24
2.79

4.93 3.41 3.49
9.87 3.54 3.64

# 1 2 3 4 5 6 7 8 9 10 11 12 13
T (Lbf) L (inch) W (inch) θr (rad) NL (Lbf) KL NL/TθL NL (Lbf) % Diff NL (Lbf) %Diff NL (Lbf) % Diff

1 36.7 19.5 9.03 0.001885 2.375 0.2364 34.3 2.46 3.58 2.21 -6.95 2.24 -5.68
2 36.7 19.5 9.03 0.001885 2.45 0.2364 35.4 2.46 0.41 2.21 -9.80 2.24 -8.57
3 55.1 19.5 9.03 0.001885 2.4 0.2904 23.1 2.45 2.08 2.2 -8.33 2.23 -7.08
4 36.7 40 9.03 0.00377 1.1 0.485 7.95 1.15 4.55 1.12 1.82 1.13 2.73
5 55.1 40 9.03 0.00377 1.075 0.594 5.17 1.14 6.05 1.11 3.26 1.12 4.19
6 18.3 56.5 9.03 0.00377 0.575 0.484 8.34 0.576 0.17 0.568 -1.22 0.573 -0.35
7 55.1 56.5 9.03 0.00377 0.55 0.842 2.644 0.554 0.73 0.547 -0.55 0.552 0.36
8 55.1 63 4.48 0.01884 0.15 2.684 0.1445 0.164 9.33 0.164 9.33 0.165 10.00
9 9.1 40 4.48 0.00377 0.125 0.694 3.64 0.138 10.40 0.137 9.60 0.137 9.60

10 36.7 40 4.48 0.00377 0.125 1.392 0.903 0.122 -2.40 0.122 -2.40 0.123 -1.60
11 36.7 40 4.48 0.00941 0.325 1.392 0.941 0.305 -6.15 0.304 -6.46 0.306 -5.85
12 36.7 20 4.48 0.00377 0.525 0.696 3.79 0.55 4.76 0.537 2.29 0.542 3.24
13 9.1 20 4.48 0.00377 0.55 0.346 16 0.567 3.09 0.553 0.55 0.557 1.27
14 18.3 20 4.48 0.00377 0.575 0.491 8.34 0.561 -2.43 0.547 -4.87 0.552 -4.00
15 27.5 20 4.48 0.00377 0.625 0.601 6.03 0.556 -11.04 0.542 -13.28 0.547 -12.48
16 36.7 20 4.48 0.00377 0.625 0.696 4.51 0.55 -12.00 0.537 -14.08 0.542 -13.28
17 9.1 40 4.48 0.00377 0.125 0.694 3.64 0.138 10.40 0.137 9.60 0.138 10.40
18 36.7 40 4.48 0.00377 0.125 1.392 0.904 0.122 -2.40 0.122 -2.40 0.123 -1.60
19 36.7 40 4.48 0.00941 0.325 1.392 0.941 0.305 -6.15 0.304 -6.46 0.306 -5.85
20 36.7 56.5 4.48 0.01884 0.25 1.967 0.362 0.263 5.20 0.262 4.80 0.264 5.60
21 55.1 56.5 4.48 0.01884 0.2 2.408 0.1925 0.226 13.00 0.227 13.50 0.228 14.00

2D elasticity modelShelton Experimental data SS E-B beam model Dynamic Tim. Model

All but three of the force values of the Timoshenko model are slightly lower than those of the 
corresponding E-B model and the exceptions were equal to rather than less than. This makes sense 
because shear would reduce the stiffness of the beam. However, when the absolute values of all 
the errors are compared, neither model seems to have an advantage. This also makes sense 
because the ratio of length to width of all the test cases was greater than 2, making the effect of 
shear negligible. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 
Comparison of Shelton’s E-B model with the Timoshenko and 2D elasticity models 

Shelton did not perform tests on any configurations with an L/W less than 2.16. To get some 
idea of what to expect, it is instructive to compare the models for small L/W.  

 
 
 
 
 
 
 
 

Figure 11 
Comparison of models for small L/W. 

In each case the pivot angle was chosen to be slightly less than the value at which a slack edge 
would begin to develop at the upstream roller. 

It is apparent that for values below 2.0, the Timoshenko and elasticity models are in fair 
agreement, but the E-B model diverges significantly from the other two. Could this mean that the 
Timoshenko model can be used for small L/W? This is an area that requires future testing. 

 
 
 
 



 
 

Dynamic wrinkling 
The graph in Figure 12(a) shows the evolution over time of lateral velocity at the downstream 

roller versus cross-web position following pivoting of a roller. The graph in Figure 12(b) shows 
the evolution of the principal minimum (lateral) stress over the same period.  Application 
parameters are the same as used for Figure 4 though Figure 7. 

In Figure 12(a) the web is initially in a steady state and the velocity profile is flat, but when it 
begins moving, lateral velocity is higher at the edges than at the center (cup shaped). At about 0.08 
second the center begins to move faster than the edges (cap shaped) and as time increases the 
velocity profile becomes progressively flatter until it reaches a completely uniform steady state 
again. 

This has implications for wrinkling because the faster portions will advance on the portions 
ahead of them and create lateral compressive stress. 

In Figure 12(b) the principal minimum stress is plotted at several different times. It is this 
stress, rather than the CD stress that will have the greatest influence on wrinkling. The web starts 
out in a state of uniaxial stress and the principle minimum stress is zero. Then, as the time 
progresses a sinusoidal-like stress profile develops with the left side being positive and the right 
side negative. At 0.06 seconds, a peak negative value of -33 psi is reached. At approximately 0.08 
seconds, the profile reverses so that the positive peak is on the right and the negative on the left. 
This event coincides with a change in shape of the lateral velocity profile. When it reaches steady 
state, there is a persistent curve in the principal stress profile due to the shear stress necessary to 
maintain the web deflection. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
     (a) Lateral velocity profile over time                (b) Principle minimum stress over time 
 

Figure 12 
Lateral velocity and principal minimum stress at downstream roller 

2D elasticity model 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

                 (a) MD stress over time                                      (b) Principal angle over time 

Figure 13 
MD stress and principal angle at downstream roller 

2D elasticity model 

MD tension disturbances due to pivoting and shifting of a roller 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
            

Figure 14 
Tension disturbances due to roller motion 

Ramp functions with 0.1 sec rise time 

The curves in Figure 14 show examples of tension disturbance at the downstream roller 
caused by five different types of roller motion.  



 
 

Application parameters correspond to Shelton’s fourth set of experimental parameters listed 
on page 45 of his dissertation [2]. Tension = 36.7 Lbf, Span length = 40 inches, Width = 9.03 
inches, thickness = 0.009 inch, KL = 0.485, modulus = 450,000 psi. 

1. Pivot-only – Pivot angle = 0.00377 radians, lateral shift = 0. 
2. Oversteering – Pivot angle = 0.00377 radians, lateral shift = 0.053 inch 
3. Shift-only – Pivot angle = 0, lateral shift = 0.105 inch 
4. Neutral steering – Pivot angle = 0.00377 radians, lateral shift = 0.105 inch 
5. Understeering – Pivot angle = 0.00377 radians, lateral shift = 0.158 inch 
 

Effect of tension change on lateral position 
In Figure 15(a), the downstream roller is first pivoted at t = 0 as it was in (a). Then the roller 

speed of 200 in/sec is decreased by 0.025 percent using a ramp function beginning at t = 2 sec. 
Another reduction of the same amount is made at t = 4 sec. The span length is 40 inches, so the 
tension time constant is 0.2 seconds. The disturbance due to pivoting is barely perceptible in (b). 
The tension starts at 36.5 Lbf and drops to 27.5 Lbf and then 18.4 Lbf due to the speed changes. 
The lateral position drops only 0.000150 inch at each tension change.  

Application parameters were the same as the in the previous example except for an increase in 
nominal line speed to 200 in/s. 

The peak in lateral position at 0.5 inch in Figure 15(b) is a transient overshoot from the initial 
pivot. 

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
                           (a) Tension                                                   (b) Lateral position 

Figure 15 
Effect of tension change on lateral position 

 
 
 
 



 
 

CONCLUSIONS 

The model performed well in the following comparisons. 
1. Timoshenko beam model of a pivoted roller 

a. Lateral position 
b. Face angle, Slope and Shear 
c. Lateral velocity 
d. Lateral force 

2. Shelton’s steady state E-B model - lateral displacement vs distance along span 
3. Shelton’s dynamic E-B model - frequency response of an oversteering guide 
4. Shelton’s 21 tests of steady state lateral force 

Although new testing should be done, particularly for L/W < 2, the remarkably close 
agreement with Shelton’s static and dynamic test results gives the 2D elasticity model a high 
degree of credibility and is suggestive of a new conceptual context for further study of lateral web 
dynamics. 

Examples illustrated in this paper were chosen mostly to enable comparison with tested 
configurations. Implications of the new model, such as tension interaction and dynamic CD 
behavior, should be explored in areas of application such as, 

1. Typical web guide configurations 
2. Nonuniform rollers 
3. Nonuniform webs 

An important limitation of the new model is that it cannot be incorporated directly into control 
algorithms. Its main utility for control engineers will be its ability to identify and quantify the 
interaction of lateral and longitudinal systems.  
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