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• In her 1987 thesis and a follow up paper in the IEEE 
Transactions, Lisa Sievers described a multi-span 
model based on the Timoshenko beam and showed 
that it performed better than a similar model based 
on the Euler Bernoulli beam.

• Then, in 1989 Young, Shelton & Kardamilas (YSK) [] 
published a description of a new Euler-Bernoulli 
multi-span model. It transfer’s lateral bending 
deformation across rollers and is functionally 
equivalent to the Sievers Euler Bernoulli model. A 
notable feature of the YSK model is the way it uses 
transfer functions to interconnect the spans.



Introduction

• The original goal for this paper was to recast the 
Sievers Timoshenko model into the same analytical 
form as the YSK model, develop a similar 
interconnection strategy and then compare the Euler 
Bernoulli and Timoshenko versions quantitatively.

• A YSK-type Timoshenko model has been developed, 
and it looks quite plausible. However, it produces a 
value for the curvature factor that doesn’t make 
sense. After exhaustive troubleshooting, I’ve 
concluded that the problem is not due to a 
procedural error; but is more likely something of a 
conceptual nature.



Introduction (Cont.)

As an alternative to the original plan I • will

– Describe the problem with the YSK-type 
Timoshenko model 

– Answer the question, “How much difference does 
shear make.” by making a quantitative comparison 
between the Euler-Bernoulli model of the YSK paper 
and a modified version of the Sievers Timoshenko 
model. 

A • detailed derivation of the modified Sievers
Timoshenko model is described in a companion 
paper presented at this conference.



Notation

• Sievers referenced all of her variables to rollers 

using superscripts to indicate whether a variable 

was defined at the upstream or downstream side 

of a particular roller.

• In this paper and much of the current literature, 

variables are referenced to spans. A variable 

labeled y02 would indicate the value of y at x = 0, in 

span 2. A variable labeled yL2 would indicate the 

value of y at x = L, in span 2.



Curvature factor
The curvature factor is a good 

indicator of model validity 

because it relies in an 

intimate way on the shape of 

the web when it is controlled 

by the normal entry rule. 

Shelton derived and published 

it for his simplest single span 

model in 1968 and it shows 

up in more sophisticated 

dynamic models as the static 

gain factor in transfer 

functions.



Curvature factor (Cont.)
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T is tension in units of force, E is the elastic modulus, I

is the area moment of inertia and G is the shear 

modulus. For the Timoshenko beam n = 1.2. For a Euler 

Bernoulli beam the same equations are used, but n = 0 

and, consequently, a = 1.



Curvature factor (Cont.)



The effect of shear
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The static equations for web shape
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From these a familiar equation is derived.
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Whose solution is,
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Shape equation
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Boundary conditions 

for Timoshenko

Solve for the coefficients C1, C2, C3 & C4. Then, rearrange 

solution in the form of products of boundary conditions 

and shape factors.
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Shape factors
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Fork in the road

The Sievers model didn’t concern itself with the details of ϕ. 

It was computed as a single number in the previous span 

and passed on to the next, but to get to transfer functions, 

it will be necessary to know its value in terms of y. From the 

governing equations it can be shown that,
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Here’s how the YSK method works

In the YSK method, only the lateral displacement is 

passed to the next span. Since all of the information 

about its derivatives is implicit in the lateral 

displacement, it is possible to reconstruct the cross 

section rotation from the previous span by mathematical 

manipulation. 



Get an expression for curvature
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Second derivative 

of shape equation



Substitute expression for ϕ
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Now all that is needed is to convert spatial derivatives to 

time derivatives.



Relations between spatial and time 

derivatives

The normal entry rule provides first order relation 
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Using the chain rule, the acceleration is
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The cross derivative can be eliminated by taking the 

spatial derivative of the normal entry rule.
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Relations between derivatives of 

position and time (Cont.)
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Note: In the steady state, the time derivative on the 

left goes to zero and this becomes a statement of the 

steady state 4th boundary condition discovered by 

Shelton.

A similar procedure for the third derivative yields,
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Summary of position - time 

relationships
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Velocity (Normal entry rule)
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Acceleration

These are used to animate the shape equation by 

making the boundary conditions a function of time.
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Time-based ODE
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There is one last issue to resolve. If the upstream roller 

is misaligned (either accidentally or because it is part 

of a guiding system), γ0 will be nonzero and will not be 

the same as γL in the previous span.



Effect of roller axis angle on 0
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The transfer function

3 3 23 1 2
3 22

0
3 2 3 22 1 2 1

2 22 2

33
3 2

0
3 2 3 22 1 2 1

2 22 2

g g g
bg s s g bs s s

y y z
L L

g g g g
g bs s s g bs s s

g vos bg s g

z
L

g g g g
g bs s s g bs s s

 
 

 
  


 



 
  

   
       
   
   

 
   
        
   
   

      
   
    

   
        
  
   

3

0
3 2 2 1

2 2

vog

g g
g bs s s





 



 
 
 
 


 
   
 
 



Three tests

There are three tests that can be applied to the preceding 

transfer function.

Test 1: Defaults to Euler Bernoulli when n = 0 - pass

Test 2: Displacement guide with z input has no dynamics 

- pass

Test 3: Curvature factor consistent with static gain – fail



The curvature factor issue

When γL in the transfer function is equal to zL/(KcL), and all 

other inputs are zero, the static gain for the transfer 

function should be unity and Kc will be
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The position of a in the denominator makes a big difference.



The curvature factor issue (Cont.)

L = 22 inches

T = 44.5 lbf

h = 0.0034 inches

E = 550,000 psi

W = 44.5 inches

The value of K̃c disagrees with two other sources.

The static gain calculated for the modified • Sievers

Timoshenko beam. 

The value calculated for a static Timoshenko beam •

by Shelton .

It is interesting to note that it reduces to the correct value 

for the Euler Bernoulli beam, when a = 1.

Kc = 0.89

K̃c = 2.5



Shelton’s dynamic Timoshenko 

model
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It used an acceleration equation with an extra “shear” term.

It also produced an unrealistic curvature factor. ˆ 5.2cK 

He must have had concerns about the validity of this 

model because he didn’t produce plots of its frequency 

response as he did for everything else.



So, how much difference does shear 

make?

The only dynamic lateral model with shear that I trust is a 

modification of one based on Sievers’ work. It passed all 

three of the tests described above. Sievers’ original model 

and the modified model are described in the companion 

to this paper.

An example of the difference between the Timoshenko 

and Euler Bernoulli models is shown on the next page. 

Parameters are:

vo = 200 fpm,  T = 44.5 lbf,  h = 0.0034 inches

E = 550,000 psi, W = 44.5 inches, μ = 0.3



A simulated example

The four spans have lengths of 10, 22, 40 and 120 inches. 

Curves show the lateral displacements at the downstream 

ends of each one. The dark lines are for the Timoshenko 

model and the gray lines are for the Euler Bernoulli model. 

The leftmost curve is the input displacement at the 

upstream roller of the first span. 



A simulated example (Cont.)

This graph shows ϕ, ψ and dyL/dx for the downstream 

end of the second span. The sum of ϕ and ψ is also 

plotted, but isn’t visible because it is identical to the 

curve for dyL/dx (as it should be). It is clear that for this 

span,  ϕ, ψ and dyL/dx are comparable to one another 

in magnitude.



TRACTION

All of the simulations and analysis described here assume 

that the web becomes locked to a roller surface at the line of 

entry and stays locked until it reaches the exit, but we all 

know that this isn’t true – especially during transient 

conditions. It was for this reason that I was frankly surprised 

that Sievers’ model worked as well as it did. This is an area 

of web handling that needs more attention.



CONCLUSIONS

A  YSK• -type Timoshenko model has been developed, and it 

looks quite plausible. However, it produces a value for the 

curvature factor that doesn’t make sense. After exhaustive 

troubleshooting, I’ve concluded that the problem is most 

likely something of a conceptual nature.



Conclusions (Cont.)

• The modified Sievers’ model was used to compare multi-

span models with and without shear. The simulations 

indicate that there are nontrivial differences. 

– In short spans ϕ, ψ and dyL/dx can be comparable to one 

another in magnitude.

– For short spans there are significant qualitative 

differences in response to a step input.

– The optimum time response for a remote pivot steering 

guide occurs when the radius of rotation of the guide 

mechanism equals KcL. In short spans, shear 

significantly affects Kc.



Conclusions (Cont.)

The simulated response to a step input is suggestive of a •

straightforward experiment which could shed considerable 

light on lateral dynamics models. It would be a simple 

matter to arrange a displacement guide to produce a step 

input into a series of spans instrumented to monitor their 

displacements.


