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Why review it?

• My impression is that it was not especially 

well-regarded.

• But when I read it for the first time last year, I 

found much to admire.

– Mathematical rigor

– A  workable lateral dynamic model that includes 

shear



Three features caught my attention

• Use of Hamilton’s principle for deriving the 

governing equations. 

• Derivation of the normal entry rule by 

application of the material derivative. 

• Use of spectral separation to justify use of 

static web shape in a dynamic model.



Three dynamic multi-span models

• Convecting string with zero bending stiffness

• Euler-Bernoulli beam with bending stiffness 

and no shear

• Timoshenko beam with both bending and 

shear



It produced a bonus

• I believe Sievers’ Timoshenko model is 

sound.

• The model she implemented could not 

handle single misaligned rollers, however, all 

the pieces were there to implement a more 

general model.
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Relationship of shear & bending
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Φ is the “cross section rotation”.

Sievers called it “face angle”.



Hamilton’s principle

• Hamilton’s Principle uses calculus of 

variations to find a pair of coupled equations 

that minimize K-V
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Governing equations (Cont.) 
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Eulerian accelerations.

Spectral separation is used to 

justify ignoring these terms.
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Spectral separation

• Means that natural frequencies of elastic 

system are significantly higher than its 

operating frequencies.

• Sievers used the frequency of the lowest 

mode of the string model as a lower bound. 

She stated that it was 70 Hz. I calculated 13 

Hz. 



Spectral separation (Cont.)

• To get a little more insight, I calculated the 
fundamental mode frequency of a stationary, 
tensioned Euler Bernoulli beam using 
parameters for the last span on the test 
machine. Assuming clamped ends, it is 46 Hz.

• Similar calculation for Timoshenko beam gave 
28 Hz.

• These frequencies are lower than expected, but 
her test frequencies were all less than 0.07 Hz. 
So, her criterion of an order of magnitude 
separation was met.



Three static equations
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Shear & cross section rotation
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The shape equation 
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Boundary conditions 

for Timoshenko

Solve for the coefficients C1, C2, C3 & C4. Then, rearrange 

solution in the form of products of boundary conditions 

and shape factors.
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Shape factors

 

   

 

cosh( ) cosh( ) cosh( ) sinh( ) 1
( )

4 sinh( ) 2 cosh( 1

cosh( ) 1 cosh( ) 1 sinh( ) sinh( ) sinh( )
5( )

sinh( ) 2 cosh( 1

sinh( ) sinh( ) sinh( )
( )

6

Kx KL KL Kx Kax KL
g x

KLa KL KL

KLa Kx Kax KL Kx KL Kx KL
g x

Ka KLa KL KL

Kx KL KL Kx KL
g x

    


 

      


   

   


 

 

cosh( ) 1 ( )(cosh( ) 1)

sinh( ) 2 cosh( 1

a KL Kx Ka L x KL

Ka KLa KL KL

    

   



Shape factors (Cont.)



Relations between spatial and time 

derivatives
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These are used to animate the shape equation by 

making the boundary conditions a function of time.

Plan is to create a time-based ODE that is a function of 

y, derivatives of y and ϕL from the previous span.

Movement relative to roller Movement of roller



First step:

Get an expression for curvature
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Second step:

Get an expression for ϕL
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Third step:

Substitute ϕL into curvature equation
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ϕ0 is equal to ϕL from previous span.

Now all that is needed is to convert spatial derivatives to 

time derivatives.



Fourth step: Replace spatial 

derivatives with time derivatives
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Use velocity and acceleration relationships to replace 

the spatial derivatives. 
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Sievers had this equation in the thesis, but without γL ,

and used it only for fixed parallel rollers.



Solving the equation

In the previous equation, when the values of yo and ϕo

depend on yL and ϕL from the preceding span, it cannot 

be solved for a single span. And since those values will 

usually depend, in turn, on values farther upstream, it 

can, in that case, only be solved as part of a set of 

simultaneous equations that include the starting point 

where both yL and ϕL are known. Furthermore, when 

there is an upstream disturbance influencing yo and ϕo, 

there is no practical way to express it as a transfer 

function. 



Transfer functions

When yo and ϕo are fixed and the web is being 

influenced only by inputs zL, γo or γL , single span 

solutions are possible and transfer functions can be 

written. Guide rollers are in this category. In a 

steering guide, roller angle γL is controlled by the 

same mechanism that controls lateral movement. So, 

γL = zL/x1, where x1 is the radius of the pivoting 

motion. In a displacement guide, γo is also controlled 

by zL. So, γo = zL/x1,  where x1 is the distance between 

the rollers, L. 



Displacement guide confirms validity
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It can be shown that g2 + g3 = g1
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Remote pivot steering guide confirms 

validity

For a steering guide: 0 0
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Effect of roller angle on ϕ0

If a roller is misaligned, the effective angle will 

change as the web crosses over it. So, the value of γL 

in ϕ0 must change.
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Sievers’ model for pivoting rollers

The only pivoting rollers in 

Sievers experiments were 

part of a displacement guide. 

So, she applied a rotational 

coordinate transformation 

that enabled her to treat 

them as fixed rollers.

This doesn’t work for single 

misaligned rollers.



Sievers’ displacement guide equation
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This equation was used at roller 2 location. The only 

difference between it and the other equation is that γL isn’t 

present and the roller translation term zL is added. 

Simulations using this equation produced results identical 

to those of the equation described earlier.



Numerical simulation

The following simulations were produced with four 

simultaneous ODEs running on FlexPDE. The model run 

time was typically 4 to 5 minutes.

Step function applied to 2nd roller of displacement guide.

(Open loop)



Numerical simulation (Cont.)

Sine wave disturbance at R0, 2 cycles/min



Numerical simulation (Cont.)

A 0.033 Hz weave with an amplitude of 0.165 inch was 

introduced at roller R0. A guiding system consisting of rollers 

R1 and R2 with a sensor at R2 reduced the weave. Weave 

reappeared at R3 and R4 with progressively larger 

amplitudes.

Experimental data from thesis Sievers thesis simulation



Numerical simulation (Cont.)

Same experiment as last slide. Comparison with modified model simulation.

Experimental data from thesis Modified Timoshenko model 

simulation



Numerical simulation (Cont.)

Same parameters as previous slide, except comparison 

with Euler Bernoulli beam. The simulation looks exactly like 

the one in the thesis. Same amplitudes and phase 

relations.

Experimental data from thesis Modified Euler Bernoulli  

simulation



Conclusions

• The normal entry rule can be derived by application of the 

material derivative.

• Lateral position errors can regenerate downstream of a 

guiding system because variations in slope or cross section 

angle at the point of control are not eliminated by simple 

position control systems.

• Both beam models exhibit weave regeneration. Data from 

four different experiments, each with different operating 

parameters, show better qualitative agreement using the 

Timoshenko model simulations than with the Euler 

Bernoulli model.



Conclusions (Cont.)

• Sievers’ model can be improved to eliminate special 

treatment for pivoting rollers (rotating coordinate system)

• The curvature factor for the modified Sievers model is the 

same as the value Shelton derived for his static, single span 

Timoshenko model. 

• The lateral acceleration equation should not be viewed in 

the same light as the normal entry rule. 


